
On-demand and Model-driven Case Building
Based on Distributed Data Sources

Mark van der Pas1,2[0000−0001−6091−9340], Remco Dijkman1[0000−0003−4083−0036],
Alp Akçay1[0000−0003−2000−6816], Ivo Adan1[0000−0002−4493−6367], and John

Walker2

1 Eindhoven University of Technology, Department of Industrial Engineering &
Innovation Sciences, Eindhoven 5600MB, The Netherlands

2 Semaku B.V., Eindhoven 5617BC, The Netherlands
m.c.a.v.d.pas@tue.nl

Abstract. The successful application of Case-Based Reasoning (CBR)
depends on the availability of data. In most manufacturing companies
these data are present, but distributed over many different systems. The
distribution of the data makes it difficult to apply CBR in real-time, as
data have to be collected from the different systems. In this work we
propose a framework and algorithm to efficiently build a case represen-
tation on-demand and solve the challenge of distributed data in CBR.
The main contribution of this work is a framework using an index for
objects and the sources where data about those objects can be found.
Next to the framework, we present an algorithm that operates on the
framework and can be used to build case representations and construct
a case base on-demand, using data from distributed sources. There are
several parameters that influence the performance of the framework. Ac-
cordingly, we show in a conceptual and experimental evaluation that in
highly-distributed and segregated environments the proposed approach
reduces the time complexity from polynomial to linear order.

Keywords: CBR frameworks · Case representation · Case base building
· Distributed systems · Industry 4.0 · Semantic Web

1 Introduction

One of the challenges identified for Case-Based Reasoning (CBR) research is
the acquisition of cases from raw data [11]. In complex manufacturing settings
numerous different systems are used, that typically operate independently, in
which these raw data are stored. Especially in Industry 4.0 with the digitization
of individual assets, for example using the Asset Administration Shell (AAS) [20],
data will be highly distributed. On top of that data from multiple companies
along the supply chain might be required. This distribution poses a challenge
of collecting the data from the relevant sources. One solution to make these
distributed data available for CBR is to push all data to the CBR system at
the moment they are generated. However, this means duplicating large amounts

2 M. van der Pas et al.

of data, the majority of which might not be relevant. Duplicating data can
be avoided by only storing the data in the source systems and collecting the
data on-demand, i.e. during case retrieval. The challenge in on-demand data
collection is to minimize the time it takes to collect the data and construct
the case base. A good example where those problems are seen is the handling
of manufacturing quality incidents [4]. Those incidents are related to a small
fraction of produced objects and data from many different systems is required to
analyze them. Generating a case representation in such scenarios often requires
significant manual effort and is based on a fixed structure, see for example [8].

To solve the challenge of distributed data, we propose a framework in which
only information about what sources contain data about what objects is stored
centrally. Specifically, all relevant objects are indexed with pointers to the sources
where data about those objects can be found. The case model (also referred to
as case structure or vocabulary), which defines the object classes as well as the
properties (relations and attributes) required to describe a case, can be used to
select the relevant objects. We identify multiple dimensions that impact the time
complexity of the problem. In both a conceptual and experimental evaluation we
show how the proposed algorithm performs compared to an approach with no in-
dex, taking into account the identified dimensions. Finally, we demonstrate that
the proposed framework and algorithm reduce the time complexity significantly
and enable real-time building of case representations.

The remainder of this work is structured as follows. First, we will introduce
the related work in Section 2. Subsequently, Section 3 describes the proposed
method in more detail, followed by a conceptual evaluation in Section 4. Section 5
presents our implementation based on Semantic Web Technologies and Industry
4.0 concepts, including an experimental evaluation of its performance. The last
sections contain a discussion, a conclusion with a summary of the findings and
ideas for future work.

2 Related Work

In this section we look into related research on distributed systems in CBR and
approaches for collecting data from distributed sources.

One of the architectural patterns in CBR is distributed case-based reasoning
[21]. In distributed CBR systems the cases are stored in multiple distributed
sources (knowledge bases). Distributed CBR systems are applied to several do-
mains. Pla et al. [19] propose a CBR system for medical diagnosis, whereas Tran
et al. [27] for fault management in communication networks. On the other hand
Clood CBR [18], SEASALT [1,2], jcolibri2 [23] and F-CBR [16] are domain in-
dependent frameworks for sharing and retrieving knowledge. The frameworks
use a modular and agent- or microservices-based design, where the cases are
distributed over multiple case bases and the main challenge is to retrieve similar
cases from those distributed bases. In contrast, we consider a situation where
the data for one case is split over multiple sources and the main challenge is to

On-demand and Model-driven Case Building 3

collect the data from the distributed sources, build the case representation(s)
and construct the case base in an efficient way.

Most work on collecting data from distributed sources is about the develop-
ment of efficient federated query engines. The main challenge here is to efficiently
query multiple (distributed) data sources. The engines operate over distributed
servers that expose data. The main engines developed are FedX [25], SPLEN-
DID [12], and SemaGrow [9]. All of them use information and metadata about
the federated data sources to optimize the query plan. The generation of the
query plan introduces quite some overhead, which limits the performance of the
engines. The federated query engines are often optimized to execute analytic
style queries that operate over large parts of the data set. However, in CBR we
are often interested in only a small fraction of the data set for describing cases.

Verborgh et al. [28] propose a framework for more efficient querying of dis-
tributed sources, that aims to balance the costs between the client and server.
Different link-based traversal algorithms are proposed for querying those sources
[26,28]. The main idea is to iterate through the sources to discover the data
matching query patterns. The query engine does not know beforehand what
objects are present in what sources, therefore all sources have to be requested,
which will limit the performance when there are many sources. In comparison to
our approach, federated query engines support more complex queries, but this
comes at the cost of more complex and less efficient data collection.

An alternative to the federated query engines is Linked Data crawling [10].
Those crawling approaches assume that every source contains pointers to the
other sources where data about certain objects can be found, such that software
agents can autonomously query and discover the data sources. In large manu-
facturing organizations there are often many different legacy and siloed systems,
that do not have the required pointers to other systems.

3 On-demand and Model-driven Case Building

In Section 3.1 the conceptual framework that supports on-demand case building
is described along with the notation that is used throughout the paper. This is
followed by a description of the algorithm in Section 3.2.

3.1 The Framework

Figure 1 gives an overview of the framework and notation we use to refer to
parts of the framework, which is further elaborated in Table 1. The framework
consists of three parts: a set of data sources, a case data model and an index. We
will discuss the parts one by one. The data sources are the distributed systems
where data about objects is stored that are relevant for a case. These sources
can be large databases that contain data about many objects, or systems that
serve data for a small set of objects. In a manufacturing setting an object can
be a specific machine and data about this machine can be stored on some local
server. The case representation model or vocabulary defines what type of data

4 M. van der Pas et al.

Fig. 1. Framework and notation.

Fig. 2. Illustration of the framework based on an example.

(classes, relations and attributes) should be used to describe a case and defines
the structure of the case base. In this work we consider an object-oriented case
representation [5,6] that consists of a collection of objects that belong to a certain
class, are described by a set of attribute-value pairs, and are related to each other
by a set of relations. Note that relations are a special case of attribute-value pairs
with a value referring to another object. Because the relations play an important
role in the framework, we distinguish the relations from the simple attribute-
value pairs (that have a literal value). For example, in a manufacturing setting
with quality incidents the case model might consist of the classes ‘product’ and
‘machine’, with relation ‘produced on’. In the remainder of this work we will
ignore the simple attributes. We assume that every object together with its
simple attribute-value pairs can be retrieved in one request and therefore do not

On-demand and Model-driven Case Building 5

impact the complexity of the problem. The last component of the framework
is the index that relates the data model to the data sources and can be used
for efficient on-demand building of the case base according to the case model
with data from the distributed sources. For that purpose the index will contain
pointers to the data sources, where we consider indexing the sources on object-
or class-level. The object-level index contains pointers for every object, while
the class-level index only contains pointers for every class in the model. An
example of the framework applied to a typical manufacturing setting can be
found in Figure 2. Generating and updating the index is implementation specific.
In Section 5.1 we describe the Industry 4.0 and Semantic Web [7] technologies
that are used in our implementation.

Table 1. Overview of notation

Model
C set of classes
L set of relation labels
A ⊆ C × C × L set of (directed) relations between classes (C) with label (L)
Instance
O set of objects
t : O → C type of object (assignment to a class)

E ⊆ O ×O × L
set of relations between objects (O) with label (L)

if (o,m, l) ∈ E, then (t(o), t(m), l) ∈ A
S = {S1, ..., Ss},

where Si ⊆ E
set of data sources with relations stored in every source

Index

ic : C → P(S)3 pointer from class to source(s) where data about
objects of that class can be found

io : O → P(S)3 pointer from object to source(s) where data about
that object can be found

3.2 Algorithm

The next step is the definition of the algorithm to construct a case base with data
from distributed sources. The index is used to target the relevant data sources
to collect data from, which will reduce the number of requests required for the
construction. Algorithm 1 takes as arguments the set of objects of interest to
build a case representation for (Oquery) and the case model, consisting of classes
(Ccase ⊆ C) and relations (Acase ⊆ A). Starting from the objects of interest,
the algorithm iterates over the objects it encounters until no new objects of
interest for the case base are found (line 7). For each object it encounters (line
10), all sources where data about those objects are stored (line 11) have to be
checked. The relevant sources can be retrieved from the index, in Algorithm 1
3 P(S) denotes the power set of S.

6 M. van der Pas et al.

Algorithm 1 Model-driven case building
1: Input
2: Oquery ▷ set of objects of interest
3: Ccase ▷ set of classes in the case model
4: Acase ▷ set of relations in the case model
5: Obase ← ∅
6: Onext ← Oquery

7: while |Onext| ̸= ∅ do
8: Oselected ← Onext −Obase

9: Onext ← ∅
10: for all o ∈ Oselected do
11: for all Sk ∈ io(o) do
12: Oforward ← {m|(o,m, l) ∈ Sk ∧ t(m) ∈ Ccase ∧ (t(o), t(m), l) ∈ Acase}
13: Obackward ← {m|(m, o, l) ∈ Sk ∧ t(m) ∈ Ccase ∧ (t(m), t(o), l) ∈ Acase}
14: Onext ← Onext ∪Oforward ∪Obackward

15: end for
16: Obase ← Obase ∪ {o}
17: end for
18: end while
19: return Obase

the object-level index is used, so it checks what sources are in the index for an
object o (io(o)). Alternatively, the class-level index can be used, in that case the
sources are selected by checking the sources for the class that an object belongs
to (ic(t(o))). For a given source, the next objects to explore are retrieved by
checking the relations to other objects that are stored in the source. For forward
trace the relations are selected where o is the origin (line 12), thus following
the direction of the relations. Following the relations in the opposite direction,
with o as the target (line 13), we refer to as backward trace. Furthermore, only
relations that are present in the case model (Acase) and objects that belong to a
class in the case model (t(m) ∈ Ccase) are of interest. Both the objects retrieved
in forward and backward trace are selected for the next iteration. The last step is
to add the object (and its attribute-value pairs) to the case base on line 16. Once
the algorithm terminates it returns the constructed case base (Obase), which is a
union of the case representation for the objects of interest: Obase =

⋃
o∈Oquery

co,
where co is the set containing the representation of one case for an object o.

For example, suppose there was some incident with Order1 from Figure 2 and
we need to build a case representation for it. The representation should contain
the workstation, the order it was assigned to and the part worked on by that
order. Algorithm 1 is then initiated with Oquery = {Order1}, Ccase = {Order},
and Acase = {(Order, Workstation, allocatedTo), (Order, Part, part)}. In the
first iteration of the algorithm there will be a request to Source3, resulting in
Onext = {WorkStation1, Part1} and Obase = {Order1}. The next iteration will
request Source1 and Source5, with result Onext = ∅ and Obase = {Order1,
WorkStation1, Part1}. After this iteration the algorithm terminates.

On-demand and Model-driven Case Building 7

4 Conceptual Evaluation

In this section we present a conceptual evaluation of the framework and algo-
rithm defined in the previous section. For the evaluation of the performance in
terms of time complexity, we compare the proposed method to a naïve approach.
The naïve approach assumes that there is no index and thus all sources have
to be checked. The other extreme is to duplicate all data to the case base in-
dependent of the case model and the objects of interest for case representation
(Oquery). In this work, we assume that duplicating all data is not feasible and it
is required to construct the case base on-demand. Therefore, we will focus on the
computational costs of case building in terms of the number of requests to the
distributed sources. In the evaluation the following dimensions are considered:

– Total number of objects (n = |O|);
– Fraction of objects of interest for the case base (p = |Obase|

|O|);
– Number of sources (s = |S|);
– Degree, which we define as the average fraction of sources an element in the

index has pointers to (d =
∑

o∈O

(
|{Sk|Sk∈S∧((o,m,l)∈Sk∨(m,o,l)∈Sk)}|

|S|

)
/|O|);

– Number of classes in the model (|C|).

Note that in practice there can be many other factors that impact the actual
time it takes to construct the case base, for example the network bandwidth.
However, we assume that in general those costs grow proportionally to the num-
ber of requests, and therefore a lower number of requests means lower costs and
better performance.

Given the dimensions above, we will evaluate the costs, expressed in the
number of requests to sources (R), for three different protocols:

– naïve: no pointers, check all sources for a given object;
– object-level index: pointers for every object to sources for that object;
– class-level index: pointers for every class to sources for objects from that

class.

Note that for the conceptual evaluation we assume that there is no overlap
between case representations (

⋂
o∈Oquery

co = ∅). However, in the experimental
evaluation in Section 5 we will show that the amount of overlap between case
representations will have an impact on the number of requests.

First, let us consider the naïve approach. Using this approach there has to
be a request to every source (s) for every object that has to end up in the case
base (np), such that:

Rnaı̈ve = nps. (1)

Alternatively, if we use the proposed framework and Algorithm 1, only sd
sources have to be requested. Thus,

Rindex = npsd. (2)

8 M. van der Pas et al.

Note that if every object or class is present in every source, d = 1 and Rindex =
Rnaı̈ve.

In the evaluation we consider a highly distributed environment, where data
about each object is stored in a separate source, such that s = n. For this
scenario we will investigate three relations. The first one is shown in Figure 3a
where the number of sources and objects is fixed, such that if p increases, the
difference in costs between the naïve (Rnaı̈ve) and index-based approach (Rindex)
will decrease linearly. Secondly, we can see in Figure 3a that the difference in
costs is higher, when the data are more segregated between sources, thus if d
increases the difference in costs between the two approaches decreases. Finally,
when all objects can be reached using only forward trace, then d = 1/s and the
difference in costs between the two approaches will decrease polynomial in n (for
a fixed p). This is shown in Figure 3b.

d
0.0

0.2
0.4

0.6
0.8

p0.0 0.2 0.4 0.6 0.8

R

0

100

200

300

400

500

600

index
naïve

(a) s = n = 25

p
0.0

0.2
0.4

0.6
0.8

1.0 n0 5 10 15 20

R

0

100

200

300

400

500

index
naïve

(b) s = n and d = 1/s

Fig. 3. Costs of building a case base in terms of the number of requests to sources (R).

|C|
0123456789 n0 5 10 15 20

R

0

10

20

30

40

50

class (ic)
object (io)

Fig. 4. Costs of building a case base in terms of the number of requests to sources (R),
comparing class- and object-level index (s = n and p = 0.1).

Next, we would like to quantify the difference between using the object- and
class-level index. If we consider only forward trace, the average degree for the
object-level index is do = 1

s = 1
n . Furthermore, if we assume that every object

belongs to one class, then this degree for class-level index is dc = n/|C|
n = 1

|C| .
This results in the following expressions for the costs using ic and io, respectively:
Ric = n2p 1

|C| = n2p
|C| and Rio = n2p 1

n = np. From those expressions, we can

On-demand and Model-driven Case Building 9

derive that the difference between the costs using the class-level index (Ric) and
the object-level index (Rio) will increase if the number of classes (|C|) decreases.
More specifically, it is beneficial to use the object-level index, unless n < |C|.
This is also visualized in Figure 4.

5 Experimental Evaluation

In this section our implementation of the framework, the experimental setup,
and results are presented. The experiments are conducted using our implemen-
tation of the framework that adopts the Industry 4.0 (semantic) AAS [3,13] and
Semantic Web [7] technologies as foundations. Therefore, also the data set is
inspired by a Industry 4.0 modular production use case. The first goal of the
experimental evaluation is to validate the implementation against the concep-
tual results and vice-versa. Subsequently, we will look at different scenarios with
overlapping case representations.

5.1 Setup

Implementation of the Framework In terms of the levels used in Figure 1,
‘Instance (data sources)’ are implemented as AAS server(s), so the data are ex-
posed according to the AAS model enriched with semantic identifiers accessible
on a server4. The ‘Model’ is defined in SHACL [17], which is a more recent ad-
dition to the Semantic Web stack that it is used more regularly to define models
and constraints in the manufacturing domain [15]. For the implementation of
the algorithm we use an agent-based system implemented in Python, where ev-
ery agent represents a specific source and maintains the ‘Index’ for that source.
For the experiments only the forward trace pointers are included. The index is
generated based on AAS metadata, consisting of the path where the data can
be retrieved and the semantic identifier, which corresponds to a relation label
(L) in the case model [24]. The index is updated based on events published by
the AASs.

The agent-based approach makes the system modular and scalable, as data
from different sources can be collected in parallel. Next to the AAS server and
the agent-based system that implements the algorithm, there is a graph database
(RDF [22] store) where all data collected by the agents is stored, and as such
forms a case base. Using a graph structured case representation fits naturally
with the structure of the AAS. However, for the implementation we made some
assumptions to limit the scope and complexity of the data integration. First, we
define the data set and sources, such that there is a straightforward mapping
from the data elements in the AASs to unique identifiers. Next to that, we only
consider ‘simple’ data types that can be one on one mapped to RDF literals.

4 https://wiki.eclipse.org/BaSyx_/_Documentation_/_Components_/_AAS_
Server

https://wiki.eclipse.org/BaSyx_/_Documentation_/_Components_/_AAS_Server
https://wiki.eclipse.org/BaSyx_/_Documentation_/_Components_/_AAS_Server

10 M. van der Pas et al.

Hypotheses The first goal is to validate the implementation against the con-
ceptual results from Section 4 and vice-versa. The validation should ensure that
we did not miss an important dimension or interaction in the conceptual evalu-
ation, which might occur in a practical setting. For this purpose we defined four
hypotheses that are formulated based on the conceptual evaluation. The first
three compare the costs for using no index (naïve approach) and the object-level
index, while the last hypothesis is designed to show the difference between using
the class- and object-level index.

H1 If p increases, the difference between Rnaı̈ve and Rindex will decrease.
H2 If d increases, the difference between Rnaı̈ve and Rindex will decrease.
H3 If s = n, the difference between Rnaı̈ve and Rindex will increase polynomial

in n.
H4 If |C| decreases, while n stays constant and there are multiple sources per

class, the difference between Ric and Rio will increase.

For the conceptual evaluation, we assumed that there is no overlap between
case representations. In the last experiments we will relax this assumption and
show the impact of having overlapping case representations (

⋂
o∈Oquery

co ̸= ∅)
when using the object-level index. More specifically, we look into how the system
behaves when there is overlap between the case representations for increasing
number of objects to build a case representation for. It is expected that more
overlap between case representations will reduce the number of requests. For
example, when multiple orders in the case base are related to the same worksta-
tion, then data about that workstation will only have to be collected once. To
test this hypothesis the average overlap between representations can be altered,
by varying the average number of relations per object in the data set (|E|

|O|). In
general, we can state that if the average number of relations per object is higher,
the probability that this object occurs in two distinct case representations is also
higher, as it is related to more other objects. For example, if a workstation is
related to all orders, it will occur in the case representation of each order and
the number of relations of that workstation is higher compared to when it is
related to only one order. The expected behaviour is captured in the last two
hypotheses:

H5 If there is overlap between case representations, R will increase sub-linear in
|Oquery|.

H6 If |E|
|O| is higher, the reduction in R due to overlapping case representations

will be lower.

Data Set For the evaluation of our methodology we use a simulated data set
describing a set of manufacturing assets, similar to the example in Figure 2. The
data set is based on an actual use case using an Industry 4.0 modular production
environment. In such an environment the objects are treated as independent
entities and have their own AAS. The complete data set consists of 272 Orders, 14
Workstations, 17 Parts, and 20 AGVs. Every order is related to one workstation

On-demand and Model-driven Case Building 11

with relation allocatedTo and one part with relation part. Furthermore, every
AGV is related to one or multiple parts (transported). All objects have their
own AAS, with multiple elements representing the relations to other objects. The
case model consists of all classes and relations, except AGV and transported.
The objects of interest for case representation are from the class Order.

For testing the different hypotheses we use different subsets of the data set
described above:

1. For the first hypothesis only orders are included (excluding the relations to
other objects), we can then vary the fraction selected for the case base (p),
by increasing the number of orders to build a case representation for.

2. For the second hypothesis, orders and their relation to workstations and
parts are stored in different elements of the AAS. The fraction of sources
each object is connected to (d) can then be altered by varying the connected
AAS elements.

3. For the third hypothesis again only orders are included, but now the number
of sources is altered by varying the number of orders that is included.

4. For the fourth hypothesis, different subsets of the data set are used to vary
the number of classes (|C|). The number of objects is constant, but they are
split over different classes.

Hypotheses 5 and 6 (overlapping case representations) require a slightly dif-
ferent setup. For testing those hypotheses we generated distinct data sets, while
utilizing the same underlying data model. In each data set a different number of
workstations and parts is included, but again each order is related to one work-
station and one part. This means that the number of relations remains constant,
but the average number of relations per object differs. An overview of the four
generated data sets can be found in Table 2.

Table 2. Description of the generated data sets for testing Hypotheses 5 and 6.

Scenario # Orders # Workstations # Parts Average # relations (|E|
|O|)

1 272 272 272 1.19
2 272 94 10 1.85
3 272 92 10 2.53
4 272 1 1 3.97

5.2 Results

Hypothesis 1 The results of the experiments for Hypothesis 1 can be found in
Figure 5a. In accordance with the conceptual results, the number of requests, R,
grows linearly in p for both the index-based and the naïve approach. However,
there is a difference in the slope, which is equal to nds (= 272×1/272×272 = 272)
for the index-based approach, compared to ns (= 272 × 272 = 73984) for the
naïve approach.

12 M. van der Pas et al.

0.0 0.2 0.4 0.6 0.8 1.0
p

0

10000

20000

30000

40000

50000

60000

70000

R

index
naïve

(a) Number of requests for dif-
ferent fraction of objects for
case base.

0 50 100 150 200 250
n

0

1000

2000

3000

4000

5000

6000

7000

R

index
naïve

(b) Number of requests for dif-
ferent number of objects in the
sources.

Fig. 5. Results of experiments testing hypothesis 1 and 3, including regression lines.

Hypothesis 2 Based on the results in Table 3 we can accept Hypothesis 2:
the number of requests for the naïve approach is constant if only d is varied,
while the requests increase linear in d when the index-based approach is used.
Therefore, the benefit of using the index will decrease if objects or classes are
present in an increasing fraction of all sources.

Table 3. Results for testing Hypothesis 2.

d 0.0037 0.0074 0.011 0.015
Rnaı̈ve 29376 29376 29376 29376
Rindex 27 54 81 108

Hypothesis 3 We can accept this hypothesis based on the results in Figure 5b.
The number of requests is linear in n for the index-based approach, but (second
order) polynomial for the naïve approach, which corresponds to the conceptual
results in Section 4 in a scenario with s = n.

Hypothesis 4 As can be seen in Figure 6, the number of requests when using
the object-level index is independent of the number of classes the objects are
distributed over, while the number of requests when using the class-level index
decreases when more classes are considered. These results correspond with the
findings in Section 4, and therefore we can also accept Hypothesis 4.

Hypotheses 5 and 6 The results are summarized in Figure 7. In Scenario 1,
where there is no overlap in case representation, similar behaviour is observed as

On-demand and Model-driven Case Building 13

1 2 3
|C|

0

50

100

150

200

250

300

350

R
object (io)
class (ic)

Fig. 6. Results of experiments testing
hypothesis 4, including regression lines.

0 50 100 150 200 250
|Oquery|

0

200

400

600

800

1000

1200

1400

R

Scenario 1
Scenario 2
Scenario 3
Scenario 4

Fig. 7. Results for the scenarios in Ta-
ble 2 (including regression lines).

in Figure 5a). Similarly, in Scenario 4 the number of requests increases linearly
for increasing number of cases, this can be explained by the fact that the same
workstation and part occur in all case representations, so the workstation and
part will be collected once the first case representation is built. The sub-linear
behaviour is especially clear for Scenario 2 with overlap between every two to four
case representations. In summary, the effect of overlapping case representations
increases with increasing number of cases and increasing average number of
relations per object.

6 Discussion

We found that the experimental results follow the conceptual results for the
computational complexity, which means the relatively straightforward expres-
sions can be used to extrapolate theoretical complexity from smaller instances
of the problem. The extrapolation can be used to evaluate bigger instances of the
problem without the effort to develop complex simulations. The worst-case per-
formance was observed for a highly distributed environment where every object
has its own data source. In this scenario the performance for the naïve approach
behaves polynomial versus linear if the proposed index-based approach is used.
Polynomial behaviour of order two is not by definition unacceptable, but on
industry scale the performance will rapidly decrease if every request takes a cou-
ple of milliseconds. Note that in the evaluations of the framework, the time and
effort to build and maintain the index itself are not considered. Both can be
achieved in different ways, but in general push-based (or event-driven) mecha-
nisms are especially efficient for such tasks [29], and we argue that those costs
are negligible in comparison to the cost savings that we found in our evaluation.

14 M. van der Pas et al.

Although in this work the focus is on manufacturing environments, the frame-
work can also be applied in other domains with distributed data sources that can
be integrated using some (semantic) model. One example is the Web, that is dis-
tributed by nature. Furthermore, many web pages embed semantic (meta)data
[14], which can be useful to include in a case representation that can be built
using the proposed framework.

For the implementation some assumptions were made to make the data inte-
gration less complex, but in practice there might be heterogeneity in data sources
and types. The advantage with the proposed framework and implementation is
that most of the data integration can be done client-side, which makes the CBR
system less dependent on the source systems. In comparison to federated query
engines, our framework and implementation does not support executing more
complex queries directly on the data sources. Instead, this could be an addi-
tional post-processing step, for example by executing a SPARQL query on the
constructed RDF case base.

7 Conclusion and Future Work

In this work we proposed a framework that enables efficient construction of a
case base from distributed sources. The main contributions are the model-based
index and the algorithm to construct the case base. We demonstrated both
conceptually and experimentally that the benefit of using the proposed index-
based approach is most significant for highly distributed environments, where
the complexity is reduced from polynomial to linear. Distributed environments
are seen in multi-national (manufacturing) companies and supply chains that
deal with big data volumes distributed over different locations and systems.
Therefore, we showed the benefits of applying the framework to a manufacturing
use case.

More research is required on integration of the framework in a complete
CBR system, especially the retrieval step. There are multiple approaches to this
integration, one option is to keep the representations of the cases in a central
case base once they are built, then only the data for a new case presented to the
system have to be collected from the distributed sources. An alternative is to
only store the main case object identifiers centrally and construct the complete
case base on demand, by collecting data describing the cases from the distributed
sources. Also a combination of both is possible.

The framework presented in this work only supports retrieving data from the
distributed sources, in contrast to distributed CBR frameworks which mainly
focus on case retrieval and case base maintenance. An interesting direction to
explore is how the framework proposed in this work can be combined with for
example the SEASALT framework [1]. Another opportunity is to integrate the
similarity computation in the framework. The algorithm can be adapted to stop
retrieving data when it concludes that certain cases will not be among the most
similar cases.

On-demand and Model-driven Case Building 15

Acknowledgements This project is supported by the European Union‘s Hori-
zon 2020 research and innovation programme under grant agreement No. 957204,
the project MAS4AI (Multi-Agent Systems for Pervasive Artificial Intelligence
for assisting Humans in Modular Production). In special we would like to thank
the project partners for providing insights in their use cases and the reviewers
for providing valuable comments and suggestions.

References

1. Bach, K.: Knowledge engineering for distributed case-based reasoning systems.
Synergies Between Knowledge Engineering and Software Engineering 626, 129–
147 (2018). https://doi.org/10.1007/978-3-319-64161-4{_}7

2. Bach, K., Reichle, M., Althoff, K.D.: A Domain Independent System Architecture
for Sharing Experience . In: LWA. pp. 296–303. Halle (9 2007)

3. Bader, S.R., Maleshkova, M.: The semantic asset administration shell. In: Inter-
national Conference on Semantic Systems. pp. 159–174. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-33220-4{_}12

4. Bergmann, R., Althoff, K., Breen, S., Göker, M., Manago, M.: Developing industrial
case-based reasoning applications: The INRECA methodology. Springer Science &
Business Media, Berlin (2003)

5. Bergmann, R.: Experience Management, Lecture Notes in Computer Science,
vol. 2432. Springer Berlin Heidelberg, Berlin, Heidelberg (2002). https://doi.org/
10.1007/3-540-45759-3

6. Bergmann, R., Kolodner, J., Plaza, E.: Representation in case-based reasoning.
The Knowledge Engineering Review 20(3), 209–213 (2005). https://doi.org/10.
1017/S0269888906000555

7. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
284(9), 34–43 (2001)

8. Camarillo, A., Ríos, J., Althoff, K.D.: Knowledge-based multi-agent system for
manufacturing problem solving process in production plants. Journal of Manufac-
turing Systems 47, 115–127 (2018). https://doi.org/10.1016/j.jmsy.2018.04.002

9. Charalambidis, A., Troumpoukis, A., Konstantopoulos, S.: SemaGrow: Optimizing
Federated SPARQL queries. In: Proceedings of the 11th International Conference
on Semantic Systems. pp. 121–128. ACM, New York, NY, USA (2015). https:
//doi.org/10.1145/2814864

10. Charpenay, V.: Semantics for the Web of Things, Modeling the Physical World
as a Collection of Things and Reasoning with their Descriptions. Ph.D. thesis,
Universität Passau (2019)

11. Goel, A.K., Diaz-Agudo, B.: What’s Hot in Case-Based Reasoning. In: Proceed-
ings of the Thirty-First AAAI Conference on Artificial Intelligence. pp. 5067–5069
(2017). https://doi.org/10.1609/aaai.v31i1.10643

12. Görlitz, O., Staab, S.: SPLENDID: SPARQL Endpoint Federation Exploiting
VOID Descriptions. In: Proceedings of the Second International Workshop on Con-
suming Linked Data (2011)

13. Grangel-González, I., Halilaj, L., Auer, S., Lohmann, S., Lange, C., Collarana,
D.: An RDF-based approach for implementing industry 4.0 components with
Administration Shells. In: 2016 IEEE 21st International Conference on Emerg-
ing Technologies and Factory Automation (ETFA). pp. 1–8. IEEE (2016). https:
//doi.org/10.1109/ETFA.2016.7733503

https://doi.org/10.1007/978-3-319-64161-4{_}7
https://doi.org/10.1007/978-3-319-64161-4{_}7
https://doi.org/10.1007/978-3-030-33220-4{_}12
https://doi.org/10.1007/978-3-030-33220-4{_}12
https://doi.org/10.1007/3-540-45759-3
https://doi.org/10.1007/3-540-45759-3
https://doi.org/10.1007/3-540-45759-3
https://doi.org/10.1007/3-540-45759-3
https://doi.org/10.1017/S0269888906000555
https://doi.org/10.1017/S0269888906000555
https://doi.org/10.1017/S0269888906000555
https://doi.org/10.1017/S0269888906000555
https://doi.org/10.1016/j.jmsy.2018.04.002
https://doi.org/10.1016/j.jmsy.2018.04.002
https://doi.org/10.1145/2814864
https://doi.org/10.1145/2814864
https://doi.org/10.1145/2814864
https://doi.org/10.1145/2814864
https://doi.org/10.1609/aaai.v31i1.10643
https://doi.org/10.1609/aaai.v31i1.10643
https://doi.org/10.1109/ETFA.2016.7733503
https://doi.org/10.1109/ETFA.2016.7733503
https://doi.org/10.1109/ETFA.2016.7733503
https://doi.org/10.1109/ETFA.2016.7733503

16 M. van der Pas et al.

14. Guha, R.V., Brickley, D., Macbeth, S.: Schemaorg: Evolution of structured data
on the web. Communications of the ACM 59(2), 44–51 (2 2016). https://doi.org/
10.1145/2844544

15. Hooshmand, Y., Resch, J., Wischnewski, P., Patil, P.: From a Monolithic PLM
Landscape to a Federated Domain and Data Mesh. Proceedings of the Design
Society 2, 713–722 (5 2022). https://doi.org/10.1017/PDS.2022.73

16. Jaiswal, A., Yigzaw, K.Y., Ozturk, P.: F-CBR: An Architecture for Federated Case-
Based Reasoning. IEEE Access 10, 75458–75471 (2022). https://doi.org/10.1109/
ACCESS.2022.3188808

17. Knublauch, H., Kontokostas, D.: Shapes Constraint Language (SHACL) (2017),
https://www.w3.org/TR/2017/REC-shacl-20170720/

18. Nkisi-Orji, I., Wiratunga, N., Palihawadana, C., Recio-García, J.A., Corsar, D.:
Clood CBR: Towards Microservices Oriented Case-Based Reasoning. In: ICCBR
2020: Case-Based Reasoning Research and Development. vol. 12311 LNAI, pp.
129–143. Springer Science and Business Media Deutschland GmbH (2020). https:
//doi.org/10.1007/978-3-030-58342-2{_}9/FIGURES/6

19. Pla, A., López, B., Gay, P., Pous, C.: eXiT*CBR.v2: Distributed case-based rea-
soning tool for medical prognosis. Decision Support Systems 54(3), 1499–1510 (2
2013). https://doi.org/10.1016/J.DSS.2012.12.033

20. Plattform Industrie 4.0: Plattform Industrie 4.0 - Asset Administration Shell
- Reading Guide (2 2022), https://www.plattform-i40.de/IP/Redaktion/EN/
Downloads/Publikation/AAS-ReadingGuide202201.html

21. Plaza, E., McGinty, L.: Distributed case-based reasoning. The Knowledge Engi-
neering Review 20, 261–265 (2006). https://doi.org/10.1017/S0269888906000683

22. RDF Working Group: Resource Description Framework (RDF) (2014), https://
www.w3.org/2001/sw/wiki/RDF

23. Recio-García, J.A., González-Calero, P.A., Díaz-Agudo, B.: jcolibri2: A framework
for building Case-based reasoning systems. Science of Computer Programming 79,
126–145 (2014). https://doi.org/10.1016/j.scico.2012.04.002

24. Rongen, S., Nikolova, N., van der Pas, M.: Modelling with AAS and RDF in
Industry 4.0. Computers in Industry 148 (6 2023). https://doi.org/10.1016/J.
COMPIND.2023.103910

25. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: A federation
layer for distributed query processing on linked open data. In: The Semanic Web:
Research and Applications. ESWC 2011. pp. 481–486. Springer, Berlin, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21064-8{_}39/COVER

26. Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Comunica: A
modular SPARQL query engine for the web. In: The Semantic Web – ISWC
2018. vol. 17, pp. 239–255. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-00668-6{_}15

27. Tran, H.M., Schönwälder, J.: DisCaRia - Distributed Case-Based Reasoning Sys-
tem for Fault Management. IEEE Transactions on Network and Service Manage-
ment 12(4), 540–553 (12 2015). https://doi.org/10.1109/TNSM.2015.2496224

28. Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L.,
De Meester, B., Haesendonck, G., Colpaert, P.: Triple Pattern Fragments: a Low-
cost Knowledge Graph Interface for the Web. Journal of Web Semantics 37, 184–
206 (2016). https://doi.org/10.1016/j.websem.2016.03.003

29. Wingerath, W., Ritter, N., Gessert, F.: Real-Time & Stream Data Management.
SpringerBriefs in Computer Science, Springer Cham (2019). https://doi.org/10.
1007/978-3-030-10555-6

https://doi.org/10.1145/2844544
https://doi.org/10.1145/2844544
https://doi.org/10.1145/2844544
https://doi.org/10.1145/2844544
https://doi.org/10.1017/PDS.2022.73
https://doi.org/10.1017/PDS.2022.73
https://doi.org/10.1109/ACCESS.2022.3188808
https://doi.org/10.1109/ACCESS.2022.3188808
https://doi.org/10.1109/ACCESS.2022.3188808
https://doi.org/10.1109/ACCESS.2022.3188808
https://www.w3.org/TR/2017/REC-shacl-20170720/
https://doi.org/10.1007/978-3-030-58342-2{_}9/FIGURES/6
https://doi.org/10.1007/978-3-030-58342-2{_}9/FIGURES/6
https://doi.org/10.1007/978-3-030-58342-2{_}9/FIGURES/6
https://doi.org/10.1007/978-3-030-58342-2{_}9/FIGURES/6
https://doi.org/10.1016/J.DSS.2012.12.033
https://doi.org/10.1016/J.DSS.2012.12.033
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/AAS-ReadingGuide202201.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/AAS-ReadingGuide202201.html
https://doi.org/10.1017/S0269888906000683
https://doi.org/10.1017/S0269888906000683
https://www.w3.org/2001/sw/wiki/RDF
https://www.w3.org/2001/sw/wiki/RDF
https://doi.org/10.1016/j.scico.2012.04.002
https://doi.org/10.1016/j.scico.2012.04.002
https://doi.org/10.1016/J.COMPIND.2023.103910
https://doi.org/10.1016/J.COMPIND.2023.103910
https://doi.org/10.1016/J.COMPIND.2023.103910
https://doi.org/10.1016/J.COMPIND.2023.103910
https://doi.org/10.1007/978-3-642-21064-8{_}39/COVER
https://doi.org/10.1007/978-3-642-21064-8{_}39/COVER
https://doi.org/10.1007/978-3-030-00668-6{_}15
https://doi.org/10.1007/978-3-030-00668-6{_}15
https://doi.org/10.1007/978-3-030-00668-6{_}15
https://doi.org/10.1007/978-3-030-00668-6{_}15
https://doi.org/10.1109/TNSM.2015.2496224
https://doi.org/10.1109/TNSM.2015.2496224
https://doi.org/10.1016/j.websem.2016.03.003
https://doi.org/10.1016/j.websem.2016.03.003
https://doi.org/10.1007/978-3-030-10555-6
https://doi.org/10.1007/978-3-030-10555-6
https://doi.org/10.1007/978-3-030-10555-6
https://doi.org/10.1007/978-3-030-10555-6

	On-demand and Model-driven Case Building Based on Distributed Data Sources

