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Abstract. The number of actors, costs, and incidents in terms of inter-
net criminality is rising each year as many devices in our daily routines
become increasingly connected to the internet. ‘Security by design’ is
gaining increased awareness in software engineering, but it is not to be
expected to catch all security issues as the range of potential security
issues and the creativity of the attackers are both seemingly endless.
Thus, we propose a multi-agent case-based reasoning system to detect
malicious traffic in a computer network. We mainly rely on the com-
monly used UNSW_NB15 data set including 82332 training cases with
mostly numeric attributes, but the application design is open to operate
with other data sources, such as NSL-KDD and CICIDS-2017 as well.
Purpose. The aim of the proposed system is to detect malicious network
traffic and alert the security engineer of a company to take further ac-
tions such as blocking the source IP address of the potential attacker.
Findings. We were able to successfully detect seven out of ten attacks
with an average true-positive rate of 82,56 % and leave the remaining
attacks (Analysis, Backdoor, Worms) for further investigation and im-
provements.

Implications and value. The results are close to other research results
with room for improvement. Due to the nature of a multi-agent frame-
work, this application could be integrated into other existing intrusion
detection systems and serve as an add-on.

Keywords: Case-based Reasoning, SEASALT, Intrusion Detection Sys-
tem, Multi-Agent System

1 Introduction

Supply chains and production processes become increasingly more digital and
connected with online services through industry 4.0 and a higher rate of global-
ization. Additionally, the pandemic forced organizations further into digitisation
by communicating to their employees located in their newly established home
offices. Through the increasing necessary network connections, the dependence
on a faultless and uninterrupted network is also increasing as well. The recent
world events showed the negative influence for multiple countries as soon as the
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production and shipping of goods is interrupted. This can be seen as an analogy
for computer network traffic: if important computers are not reachable in the
network, if important services cannot be reached, the production rate of a com-
pany decreases - in the worst case, the company has to shut down its production
entirely. It is not only the loss of income through the not produced goods, which
negatively affects the company, but also further indirect consequences such as
damage of reputation and legal consequences by not fulfilling service level agree-
ments (SLA)E| [18] or, in case of a data leak, general data protection regulation
(GDPR) or California privacy rights act (CPRA). For Europe, the European
Union Agency for Cybersecurity publishes annually the NISE| Investments re-
port. According to this report, the top components of direct incident costs are
incident response costs (33 %), costs related to data recovery and business con-
tinuity management (22 %) and loss of productivity (19 %) [7].

Worldwide, the investment in cyber threat intelligence is annually increas-
ing by 16 % [1] with the top three investments by solution type are cloud ac-
cess security brokers (33 %), vulnerability assessment (25 %) and web application
firewalls (25 %) [6], which matches the needs in a stable network environment
as mentioned above and where our approach can be supportive. Nevertheless,
medium-sized companies and startups are financially not able to invest in secu-
rity or do not have a dedicated ransomware defense program, e.g., 44 % of the
companies in the health sector [7]. The lack of security professionals and the
lack of established certified processes, e. g. ISO27001, enables potential attackers
to enter and attack the computer network of a company. It is not uncommon
for companies to have multiple thousands of known vulnerability issues - even
for larger IT companies. Thus, a network intrusion detection system to detect
potential attacks can be helpful in the mitigation of an attack and consequently
to reduce the effective costs.

For the support on intrusion detection for any interested individual or com-
pany, we develop a case-based reasoning (CBR) intrusion detection system (IDS).
CBR is a methodology cycling through four steps: retrieve, reuse, revise, retain.
Generally, CBR follows the paradigm “Similar problems have similar solutions”,
thus retrieving experience from old situations (cases) to solve a new occurring
problem. For any given data package, we retrieve the most similar data package
(case) and might reuse its solution (label) to flag an incoming data package as
potential attack. If certain attributes are missing or the usage is not immedi-
ately possible, we might revise the case and query the system again. Based on
the results, a knowledge engineer might decide to retain the new case into the
case base. Another possible consequence of the retain step might also only be
to adjust the similarity measures, which is one of the knowledge containers for
the knowledge representation, along the casebase, adaptation knowledge, and
vocabulary according to Richter [11]. As there are different kinds of attacks and
different kinds of (training-) data sets, we propose a multi-agent system accord-

3 Def. SLA: An explicit statement of expectations and obligations that exist in a busi-
ness relationship between two organizations: the service provider and customer. [?]
4 Network and Information Systems Directive
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ing to the SEASALT architecture [2] to ensure the scalability of the system.
Using this way of modularization allows us to initialize and query CBR agents
whenever they are needed and adjust resources accordingly to the amount of in-
coming data packages (potential attacks). Using only a single classifier was not
feasible due to limited computational resources triggered by a large casebaseﬂ
In the following sections, we begin to take a closer look at related work
and similar approaches in the literature. This will provide us insight in which
data sets are most commonly used and how other approaches fare in terms of
detecting malicious traffic. Section 3 describes the concept of our application,
including the reasoning behind the knowledge modeling and case representation.
Consequently, we provide a brief overview on the application itself in Section 4
and continue with an evaluation of our approach in contrast to other approaches
in Section 5. The paper closes with a conclusion and an outlook into future work.

2 Literature review

The aim of the literature review is to identify categories of AI methods and to
find common data sets, which are used to measure the detection rate of mali-
cious traffic. As database, we chose IEEEXploreEL arXivﬂ and Google Scholarﬂ
We filtered for articles, which have been published in conferences using peer re-
views as review criteriaﬂ The time frame ranges from 2015 to 2022; from 2014
backwards, the number of relevant literature rapidly decreases. After additional
filtering, we identified 206 relevant articles.

2.1 Data sets

In terms of data sets, we could identify the following usage:

Four ‘main’ data sets can be identified: KDD-CUP-99, NSL-KDD, UNSW-
NB15 and CIC-IDS-2017. The former both were predominantly existent in the
early literature, also before 2015, with both data sets releasing in 1999. NSL-
KDD has been steadily updated and seems to be the most used data set up until
today, while KDD-CUP-99 lost its popularity. 2018 was a year where multiple
new datasets have been created|§|7 but seemingly have not been used furthermore.
Instead, the latter two, UNSW-NB15 and CIC-IDS-2017 are newer data sets,
rising in popularity and are becoming possible alternatives. Figure|[l| presents an
overview of the popularity of the mentioned data sets in the relevant literature
since 2015.

5 It has to be tested, whether approaches to optimize the retrieval on large casebases
will ease this limitation; see also Section 5.1: Limitations.

5 https://ieeexplore.icee.org/Xplore/home.jsp

" https://arxiv.org/

8 https://scholar.google.com/

9 Assumed to exist, if not explicitly mentioned.

10 But their share was 10 % or lower, thus, not depicted in this graphic.
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Fig. 1. Used datasets and their share in the relevant literature since 2015. x-axis: year
of publication; y-axis: number of publications using the corresponding data set.

2.2 Classifiers

In terms of classifiers, we could identify the following usage:
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Fig. 2. Used classifiers and their share in the relevant literature since 2015. x-axis: year
of publication; y-axis: number of publications using the corresponding classifier.

Unsurprisingly, as the most approaches are based on machine learning al-
gorithms, neural networks (mostly with feature-selection techniques) and tree-
based classifiers (mostly random forests to prevent overfitting) are the most
dominant classifiers since 2015 up until today. Distance-based models (mostly
support vector machines) also achieved reasonable results, but overall worse than
its contenders.
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2.3 Related Work

In this section, we briefly present related work, which is using the data set
UNSW,NBlﬂE To our best knowledge, our approach is the first in the CBR
domain, thus, referring to related approaches using the same dataset.

Ullah and Mahmoud focus on identifying malicious traffic in IoT networks.
The authors propose a two-level hybrid anomalous activity system [I5]. The first
level distinguishes traffic between ‘normal’” and ‘anomalous’ using flow-based fea-
tures extracted from the CICIDS2017 and UNSW-NB15 dataset. If an anomaly
activity is detected, the flow is forwarded to the level-2 model to find the cat-
egory of the anomaly, using recursive feature elimination, synthetic minority
over-sampling technique, edited nearest neighbours for cleaning the aforemen-
tioned datasets and random forest classifier for the level-2 model [I5]. Their
results propose a 97 % F1 score with both respectively 97 % precision and recall
across all attacks. A validation using a real-world scenario to validate the model
is promised, but seemingly never publishedE

Anwer et al. present ‘A Framework for Efficient Network Anomaly Intrusion
Detection with Features Selection’, applying different strategies by using filter
and wrapper feature selection methodologies [I]. For classification, J48 and Nailve
Bayes algorithms are used. By trying to find the lowest required number of
attributes, the authors achieve an accuracy of 80 % across all attacks using 18
features. Future work suggests using support vector machines, artificial neural
networks and a majority voting scheme between all classifiers to increase the
accuracy.

Wu and Guo propose ‘LuNet: A Deep Neural Network for Network Intrusion
Detection’ [19]. The authors focus on decreasing the false-positive rate of the
system, motivated by the efficiency of the system overall, which often is not
accounted for in publications with high detection rates, according to the authors.
LuNet is highly focused on convolutional and recurrent neural networks - these
learn input traffic data in sync with a gradually increasing granularity such
that both spatial and temporal features of the data can be effectively extracted
[19]. The results are separated in eight different algorithms, reaching at best an
accuracy of 82.78 % with a FPR of 4.72 %.

3 Concept

3.1 Dataset

The concept of the prototype relies to some extend on the chosen dataset. While
we propose a multi-agent approach, each agent needs to establish its casebase
and cases. For the agents that will be evaluated in section[5] we chose the UNSW-
NB15 dataset based on the recommendations by Divekar et al. (2018): “In sum-
mary the results strongly indicate that UNSW-NB15 can satisfactorily substitute

1 See Section [3 for the reasoning of this choice.
12 The authors continued their work in IDS in IoT, but generated new (flow-based)
data set.
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the archaic KDD CUP 99 dataset and even NSL-KDD when used to train ma-
chine learning anomaly-based NIDSs.” [5] and by Ring et al. (2019): “Further,
we’d like to give a general recommendation for the use of the [...] CICIDS 2017
and UNSW-NB15 data sets. [...] CICIDS 2017 and UNSW-NB15 contain a wide
range of attack scenarios.” [12]. Both authors published an extensive literature
review on the current datasets; their recommendation seems to confirm the trend
shown in Figure [[] As KDD-CUP-99 and NSL-KDD both are based on 42 at-
tributes, we are optimistic for our approach to work similar with those data sets
- but the confirmation remains open for future work.

UNSW_NBI15 has been created by N.Moustafa and J.Slay and spans over
47 different attributes, which can be sub-categorized into basic features, connec-
tion features, content features, time features, additional generated features, and
labeled features. The attack categories are labeled as 1, while normal traffic is
labeled as 0 [9]. Table [1] provides a brief description of the attack categories, so
that the interested reader is able to gain a picture of the attacks we are trying
to prevent from happening.

The dataset is split into training data (82332 packages, thus, in sum 82332
cases) and testing data (175341 packages). For a detailed description of the 47
features, we refer to the original publication by Moustafa and Slay [9].

Analysis a type of variety intrusions that penetrate the web applications via
ports, emails, and web scripts.

Backdoor  a technique of bypassing a stealthy normal authentication, securing
unauthorized remote access to a device.

DoS intrusion which disrupts the computer resources, to be extremely busy
in order to prevent the authorized requests from accessing a device.
Exploit a sequence of instructions that takes advantage of a vulnerability to
be caused by an unintentional behavior on a host or network.
Fuzzers attacker attempts to discover security loopholes in a network by feed-
ing it with massive inputting of random data to make it crash.
Generic technique that establishes against every block-cipher to collision with-

out respect to the configuration of the block-cipher.
Reconnaissance can be defined as a probe; an attack that gathers information about
a computer network to evade its security controls.
Shellcode  an attack in which the attacker penetrates a slight piece of code start-
ing from a shell to control the compromised machine.
‘Worms an attack whereby the attacker replicates itself in order to spread on
other computers. Often, it uses a computer network to spread itself.
Table 1. Description of the attack categories by Moustafa and Slay [9]
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3.2 Case-based reasoning agents

In terms of efficiency and scalability, we suggest a multi-agent system with at
least one agent per attack category and one agent for normal data traffic.

We begin with two agents on top (the first layer): A BurpAgent and Wire-
sharkAgent. Those agents are trained and fed with data of their respective com-
monly used programs “Burp” and “Wireshark”. Both tools are commonly used
in the domain: the former, for intercepting and manually manipulating traffic
but also capturing traffic in general, the latter mainly for capturing and filtering
traffic. Wireshark is known for creating “packet capture”-files (.pcap), which are
the foundation of the training- and test datasets of all discussed data sets. Those
.pcap file are usually translated into .csv files. These files can be imported by the
WiresharkAgent, which then can flag each packet with “normal” or “suspicious”
traffic. Suspicious traffic can be forwarded to the next layer to further iden-
tify the incoming packet. This leaves us for the UNSW-NB15 data set with ten
agents - which can be multi-threaded, if the amount of incoming traffic makes
it necessary. The agents can easily be incorporated into multi-agent frameworks
such as the SEASALT architecture [2]. The structure is also depicted in Figure
M in Section 4.

Wﬂ use case-based reasoning agents, each containing four knowledge con-
tainers according to Richter [II]: wvocabulary, similarity measure, adaptation
knowledge, casebase.

In terms of wocabulary structure, we use an attribute-value representation,
as the measurable data contains 35 attributes in addition to twelve derived
attributes. No set of attributes contains unknown values; thus only complete
situations are evaluated. Correlations between certain attributes could not be
detected, yet. Certainly, attributes contain correlation to attack categories, which
will be covered next in the similarity measure container.

Following the weighted Hamming similarity measure

sim(q,p) = Y (g x simi(gi,pi) | 1 < i <n) (1)

as Richter and others suggested, we utilize the local-global principle [JTTJT6]. For
local measures sim;, we inspect the attributes A; based on their minimum and
maximum values and calibrate a symmetrical polynomial function with heav-
ily decreasing similarity for differing attributes based on the variability of an
attribute. The narrower the data points of an attribute, the stronger decreas-
ing the similarity function. For the amalgamation function, we set values for
the non-negative real weight vector coefficients g = (g1, ..., gn), normalized to
>-gi=1[1].

For the values of g, we calculate the average value of each attribute ranging
over the whole data set and also the average value filtered by each attack cate-
gory. This enables us to identify attributes which seem to hint at a certain attack

'3 The remainder of this section is mostly similar to Schoenborn et al. [I3]. The overall
structure described below has not drastically changed since. However, we slightly
changed the used similarity metrics and weights for our agents, leaving us with a
different implementation and overall better results.
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for given values. For example, spkts (=‘source packets’) depicts the source-to-
destination packet count with the following calculated average values for each
attack category, reading: “For an exploit attack, 37,7 packets have been sent on
average from the source to the destination”:

AVG ‘Analysis Backd. DoS Exploit Fuzzer Generic Normal Recon Shellc. Worm
18,67| 3,12 439 289 37,7 118 2,8 6,97 6,97 6,07 16,78

While the average on the whole data set is at 18,67 and has lower values
for other attacks, Exploit points out with an average value of 37,7 packets from
source to destination. This confirms the intuitive expectation of an exploit at-
tack: to exploit means in the I'T-security context to systematically abuse known
security issues of a given system. However, it needs to be tested, which security
issues the target might have - resulting into multiple requests and consequently
an increased amount of packets running from source-to-destination. Therefore,
spkts receives a higher weight than other attributes for the exploit agent. The
more distinct an attribute-value, the higher the weight. Figure [3] further illus-
trates the construction.

45

40 Exoloi
xploit
35 P

30 DoS

Generic

Backdoor Rec%rr]\ellcod
Normi[ . Worm
nalysis

Fig. 3. Example for weight selection for the attribute spkts. y-axis depicts the average
values calculated for the attribute spkts. Exploits and DoS attacks can mostly be easily
classified, e. g., if the value is > 35, it is most likely an exploit. Thus, exploit- and DoS
agents receive a higher weight for the attribute spkts. If the value is inside the interval
[23,32], it is most likely a DoS attack. Most other values < 15 cannot easily be assigned
to an attack category, thus, spkts receiving a lower weight for the respective agents.

On a similar notion, this situation also holds true for the denial of service
(DoS) attack: with a value of 28,9, it is also distinct enough from other attack
categories, which range on average between 2,8 and 16,78. Therefore, we are also
able to identify attribute values, which are not the maximum, but still unique
to a certain attack category - and use this information to increase the weight of
the given attribute for the corresponding agent (see Figure . We repeat this
process for each agent and each attribute.
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Each agent is trained to detect its respective attack, i.e., a DoS agent only
contains cases labeled with denial of service attacks. Thus, the case base contains
the experiences based on the training data set. We store each line of the data set
as a case, resulting in 82332 cases overall. However, there is still room left for
improvement regarding the two conflicting goals: having the case base as large
as possible for increased competence knowledge, while having the case base as
small as possible for better efficiency, relative to the available resources.

For each package in the testing data set, each agent votes by submitting its
n most similar cases to a coordination agent. For now, it will be left open for
discussion in Section [5| whether n should be 1 to submit only the most similar
case or to calculate the average similarity of n > 1 cases to reduce the risk of
outliers. For our experiments, we choose n = 10 to remove outliers and gain
insight whether the similarity of other similar cases is decreasing correctly, as
to be expected. The votes with the highest similarities will be reported to the
(human) user. After receiving the results, the user may decide which agent is
ultimately correct - leaving the responsibility and legal liability to the human
user - and might choose to start further actions to stop the attack, such as
blocking the source IP address of the potential attacker.

4 Implementation

We implemented the system described in Section [3] by using myCBR 3.4 and
the programming language JAVA. MyCBR is an open-source similarity-based
retrieval tool and software development kit (SDK)E and has been further de-
veloped by students of the University of Hildesheim and by the authors, hence
the increased version number. MyCBR 3.4 and the prototype presented in this
contribution are available for free under the LGPL licence at Githuh™]

Figure 1 provides a brief overview of the multi-agent system. We would like
to emphasize that each agent underlies the SEASALT architecture by Bach [2].
First, the user will be provided with a simple graphical web interface, asking to
import either a Burp-Export file, a Wireshark .csv Export, or the UNSW-NB15
training- or test data set. In either cases, the Coordination Agent will forward
the data to the corresponding agents. However, in the first three cases, the agent
will print average statistics on the data visibly to the IDE console or log file.
This is especially important for the knowledge engineer to view and control the
training data.

In case of importing training data, each agent will be initialized with the
given training data, corresponding to its agent type. Each topic agent extents
the abstract class Agent, which forces each agent to implement methods relevant
for any CBR functionality, such as initializing a myCBR project file (.prj) and
initializing the four knowledge containers.

For String (text) values, such as protocol, service, and state, we use either
the Levenshtein similarity function, or check for equality - depending on the

1 see [http://mychr-project.org/index.html
15 see [https://github.com/jmschoenborn
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Fig. 4. Overview of the implementation, including ten topic agents.

attribute. For example, for protocol, we check whether the same protocol has
been used, as a lexicographical distance is not applicable here (in contrast to
the IP source address, as it might be interesting whether the attack is origi-
nating from the same subnetwork). For the most numeric attributes, a symmet-
rical polynomial function has been established. Exception here is the attribute
“Port”: Port numbers are assigned in various ways, based on three ranges: System
Ports (0-1023), User Ports (1024-49151), and the Dynamic and/or Private Ports
(49152-65535); the different uses of these ranges are described in RFCGSZ&@ We
treat the similarity of ports to the three groups accordingly. After all knowledge
containers are initialized with given values of the knowledge engineer and the
training data, the myCBR files are stored to the local disk and the initialization
process of the agent is finalized. Using the stored files allows us to load agents
for the testing data set on the fly. The agents can easily be adjusted to fit for
other training data sets, such as mentioned in Section as well.

In case of importing the testing data set, already established agents are ac-
tivated by the coordination agent. Additionally, the user provides a positive
number a for the minimum number of different attack categories that should
be displayed in the result and a positive number ¢ > a for the number of cases
that should be presented. This allows the user to receive a broader picture of
the similarity distribution between multiple attack categories to prevent missing
out on ambiguous results.

Before going through the test dataset, we filter the test dataset by attacks
and confront the pool of all agents with a certain attack for training purposes.

16 see https://www.iana.org/assignments/service-names-port-numbers/

service-names-port-numbers.xhtml
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For example, consider we filter the dataset by the attack ‘Shellcode’. The
goal is to identify, whether the corresponding agent can identify its attack, i.e.,
wins the majority votum. Figure [5| shows (left) one exemplary end result after
one voting iteration. The first three values (above the horizontal line) are not
the overall three best cases, but instead the best cases of three distinct attackqd ']
For the test case labeled as Shellcode, the ShellcodeAgent provides the best case
with 99,99 % similarity (ID 6530). However, 7 votes of the GenericAgent made
it into the best 10 cases (below the horizontal line). Thus, in terms of a majority
vote, the attack has been incorrectly identified (False-Positive). Figure 5| shows
(right) the end result of the Shellcode Agent. The result reads as follows: Out
of 1000 iterations, the attack ‘Shellcode’ has been voted for by 0,1,2,....,10 times
by the Shellcode Agent. 6 or more votes are treated as 'success’ (— the sum of
all results below the horizontal line). The more votes, the better the detection
rate of an attack.

ID: 6530 (0.9999999999999997): Shellcode | Endresult for 1000 iterations,
ID: 64098 (0.97228711331560812): Generic searching for 'Shellcode’:

ID: 5765 (©.966183923137073): Fuzzers 0: 14

- 1: 163

ID: 6530 (0.9999999999999997): Shellcode | 2: 82

ID: 64098 (0.9722871133156012): Generic 3: 86

ID: 15808 (@.9719427049207273): Generic 4:
ID: 51936 (@.9700155694032748): Generic 5:
ID: 54057 (@.9684539454236284): Generic | ------
ID: 60882 (@.9680125282344887): Generic 6:
ID: 63977 (@.9680114449916848): Generic 7:
ID: 12705 (0.9671897332233353): Generic 8: 71
ID: 5765 (08.966183923137073): Fuzzers 9

ID: 9851 (0.9648157773748365): Shellcode | 1

0: 138

Fig. 5. (left) Example result after one voting iteration; (right) End result of the Shell-
codeAgent. Both are used to analyze the performance of the classifiers for the domain
expert to validate the systems output and performance, e. g., validating the similarity
assessment.

Table [2] presents the results for all ten agents for the described test phase.
The agents Analysis, Backdoor, DoS, Shellcode, Worm are not able to identify
their attacks, whereas Normal and Generic agents achieve good results. Exploit,
Fuzzer, and Reconnaissance agents achieve acceptable, but improvable results.
We explicitly listed the counter for false-positives: for example, in 575 of 1000
cases where Analysis was the labelled attack, the Exploit agent won the major-
ity vote instead. Further investigating the amount of false-positives, the DoS,
Exploit and Reconnaissance agents cause a high amount of disturbance.

17" As mentioned before, this is done to identify how close different attacks are to each
other. This can be helpful to adjust similarities regarding false-positive results.
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Vote x

Analys Backdo DoS Exploi Fuzzer Generi Normal Recon Shell Worm

0 908 823 481 192 162 14 124 131 325 119
1 38 53 112 23 95 5 50 102 267 10
2 33 67 147 20 65 7 33 45 155 1
3 9 12 35 27 61 12 10 24 98 0
4 8 43 59 40 70 9 15 21 53 0
5 4 2 48 23 72 18 23 5 51 0
6 0 0 46 61 73 14 9 15 25 0
7 0 0 14 186 72 20 15 13 12 0
8 0 0 33 58 88 20 13 11 13 0
9 0 0 8 87 116 141 33 90 0 0
10 0 0 17 283 126 740 675 603 1 0
False-Pos.|Analys Backdo DoS Exploi Fuzzer Generi Normal Recon Shell Worm
Analysis - 0 0 0 0 0 0 0 0 0
Backdoor| 0 - 0 0 0 0 0 0 0 0
DoS 104 183 - 98 48 8 10 50 77 1
Exploits | 575 451 502 - 200 16 127 221 259 87
Fuzzers 15 14 16 15 - 10 32 3 12 0
Generic 0 2 0 2 1 - 0 0 0 12
Normal 17 0 1 0 0 - 0 2 0
Recon 67 94 109 71 47 1 24 - 254 12
Shellcode| 0 3 1 0 1 0 0 0 - 0
Worms 0 0 0 0 0 0 0 0 -
TPR 0 0 11.80 67.50 47.50 93.50 74.50 67.20 05.10 O
FPR | 77,80 74,70 62.90 18.60 30.60 03.50 19.30 27.40 60.04 11.20
Precision 0 0 15.80 78.40 60.82 96.39 79.42 71.04 7.83 0
Recall 0 0 11.80 67.50 47.50 93.50 74.50 67.20 5.10 O
F1 0 0 13.51 72.54 53.34 9492 76.88 69.06 6.17 0

Table 2. Training scenario: 1000 cases per agent are presented. The table depicts how
well agents are able to detect test cases with their respective label. The top half of
the table presents the results of the majority votum, reading: ‘Out of 1000 cases, the
attack column name has been voted for by z agents for n times.’

5 Evaluation

5.1 Limitations

During the

first test runs we encountered a few challenges with the data set,

which resulted into limitations to this prototype version.

1. Redundancy
As to be expected, the training data set contained multiple redundant cases,
containing the same attribute-value pairs. If these cases turn out to be the
most similar case for a given testing data input query case, the majority
vote will easily be flooded by the redundant cases. A relatively quick fix to
this challenge would be to simply remove redundant cases and remain with
one pivotal case. The occurrence of a large amount of redundant cases might
contain context information, which should not easily be discarded. However,
a more elegant and efficient way would be a proper introduction of case base
maintenance under the aspect of pivotal cases, and coverage and reachability

of cases

in a casebase as introduced by Smyth & Keane [14].
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2. Same case, different attack category
We identified multiple cases with exactly the same attribute-value pairs, but
different attack category labels (249-Analysis, 710-DoS, 1413-Reconnaissance,
1416-Exploits, 3421-Fuzzers). During the training phase, and tests within the
training data set, this resulted into a 100 % similarity for a given case for
multiple different attack categories, which can easily lead to an increased
rate of false-positives.

5.2 Results

Table [3] presents our results of querying the topic agents with the test data set.
We confronted the agents with 50000 cases randomly selected out of the test
data seﬁ Each activated topic agent voted with their n = 10 most similar
cases. Out of this pool of best cases (100 with 10 active agents), the 10 most
similar cases overall have been chosen. Each correct vote will be counted: if there
are at least six correct votes, the query is considered as classiﬁeﬂ All correct
votes will be summarized and we provide all necessary variables to calculate

Precision __I'PR Recall _TPR F1 (2 precision * recall
TPR+ FPR)’ TPR+ FNR)’ precision + recall )

Analys Backdo DoS Exploits Fuzzers Generic Normal Recon Shell Worm
Count 869 739 4567 12916 7366 6653 12591 3806 439 53
TPR 0,00 0,00 70,73 94,59 86,97 98,15 99,42 97,32 30,77 0,00
FPR 000 000 74,48 84,28 72,03 59,34 32,86 64,80 26,32 0,00
TNR 100,00 100,00 25,52 15,72 27,97 40,66 67,14 35,20 73,68 0,00
FNR 100,00 100,00 29,27 5,41 13,03 1,85 0,58 2,68 69,23 0,00

Precision 0,00 0,00 26,22 59,11 70,39 98,30 98,37 54,38 28,57 0,00
Recall 0,00 0,00 70,73 94,59 86,96 98,14 99,41 97,32 30,76 0,00

F1 0,00 0,00 38,26 72,76 77,81 98,23 98,89 69,78 29,63 0,00
Results of other approaches (no CBR) using the same dataset

Wheelus et al. [I7]| ranging from 69 % to 83 % TPR for all attacks

Pratomo et al. [I0]| 69,21 % TPR on average for all attacks

Mebawondu et al [8]| 76,96 % TPR for all attacks
Ullah and Mahmoud [15]| 97 % F1 score with 97 % precision and recall
Anwer et al. [I]| accuracy of 80 % using 18 features
Wu and Guo [19]| accuracy of 82.78 % at best, FPR of 4.72 %
Our proposed approach| 82,56 % TPR (excluding Analysis, Backdoor, Worms)

Table 3. Results of quering the MAS using the test dataset. Additionally, direct com-
parison to other approaches using the same data set.

As the results in Table [3| show and as the preliminary results of Table
suggested, we receive very good results for Normal and Generic agent and ac-
ceptable results for Exploits, Fuzzers and Reconnaissance agents. As described

18 The complete test data set contains 175341 entries.
19 Either true-positive or false-negative
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earlier, DoS, Exploits and Reconnaissance agents are disturbing with too many
false-positive results. This is very likely the result of an improper similarity mod-
eling of those agents and will be further investigated in future work. Excluding
Analysis, Backdoor, and Worm Agents - as these attacks cannot be detected
by the proposed system, yet - leaves us with 82,56 % TPR which is competitive
with similar approaches. The exclusion of the mentioned agents is easily done
by having the multi-agent structure.

To receive better results, we plan to integrate SHAP (SHapley Additive ex-
Planations) as a technique for explaining the output by assigning importance
values to the input features. The SHAP value of a feature represents the con-
tribution of that feature to the difference between the actual prediction and
the average prediction for all possible combinations of features. This will allow
us to further sharpen the similarity measures, more precisely, the weights of
the attributes. Furthermore, it can aid in model debugging, interpretation, and
communication of results. Nevertheless, the results indicate a possibility of using
CBR in an important domain - the IT security - with promsing results.

6 Conclusion

We present a transparent multi-agent based CBR system for supporting intrusion
detection in a network using the UNSW_NB15 data set for training and testing.
Each topic agent of the multi-agent system contains its own casebase, similarity
measure, vocabulary, and adaptation knowledge. The modeling, e.g., the as-
sessment of similarity measures and weights, has mostly been done based on our
expertise of the domain and based on the identification of distinct attribute-value
pairs, characterizing given attack categories described in Section 3.

Despite the limitations described in Section|5.1] we were able to detect normal
and generic traffic - competitive with other (non-CBR) approaches. Four agents
need further adjustments to achieve better results, while four agents need to be
remodeled. Especially the Worm agent seems to suffer from a low casebase (44
cases in the training set). Nevertheless, Worms contain by far the most distinct
and characteristic values, which leaves us optimistic to receive better results
after further fine-tuning of the local similarity measures.

For further adjustments and future work, we are looking to integrate the
KDD-CUP-99 data set and the NSL-KDD data set. As the results of Anwer et
al. [I] suggests, it seems possible to achieve reasonable results with a relative low
number of attributes. Thus, it could be helpful to find overlapping attributes in
the three different data sets and include these in the casebase of the correspond-
ing agents. This way, we can further emphasize on the usefulness of a multi-agent
system by using different sources to enrich our agents.

Furthermore, the modeling can possibly be supported by introducing SHAP
values, as we are already planning to integrate explainability to the system a
next milestone. Explainability further increases the transparency of the system
and should help both, the knowledge engineer, and the user of the system, to
understand its decision making process.
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