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Abstract. The financial domain has proven to be a fertile source of
challenging machine learning problems across a variety of tasks includ-
ing prediction, clustering, and classification. Researchers can access an
abundance of time-series data and even modest performance improve-
ments can be translated into significant additional value. In this work,
we consider the use of case-based reasoning for an important task in
this domain, by using historical stock returns time-series data for in-
dustry sector classification. We discuss why time-series data can present
some significant representational challenges for conventional case-based
reasoning approaches, and in response, we propose a novel representa-
tion based on the factorization of a similarity count matrix, which can
be readily calculated from raw stock returns data. We argue that this
representation is well suited to case-based reasoning and evaluate our
approach using a large-scale public dataset for the industry sector classi-
fication task, demonstrating substantial performance improvements over
several baselines using more conventional representations.

Keywords: Case-Based Reasoning · Time-Series · Finance · Represen-
tation Learning

1 Introduction

Case-based reasoning (CBR) approaches have been applied in financial domains,
and for a variety of tasks, from the early days of the field; see for example the
work of [23] on the use of CBR for financial decision-making. In the years since,
there have been many efforts made to apply CBR ideas to a diverse range of
financial decision-making and prediction tasks [13,25,1,6]. Nevertheless, the use
of CBR in such domains is not without its challenges, not the least of which
concerns the very nature of many financial datasets and their relationship to the
similarity assumption that underpins CBR. The central dogma of CBR is that
similar problems have similar solutions, yet financial regulators are always at
pains to point out that “past performance is not a guarantee of future results”
suggesting that this principle may not be so reliable in financial domains, at least
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when it comes to predicting the future. As society changes and economies ebb and
flow, companies that were once the stock market darlings fall out of favour, while
new winners seem to emerge, with some regularity, albeit unpredictably and often
with little or no warning. Two companies that were similar in the past may no
longer be considered similar in the present, while the trajectories of companies
with divergent histories might suddenly converge if future circumstances conspire
in their favour. All of this greatly complicates the central role of similarity in
case retrieval.

In addition, the feature-based (attribute-value) representations that are com-
monplace in CBR systems may not provide such a good fit with the type of se-
quential time-series data (e.g. daily, weekly, and monthly stock prices/returns)
that are the norm in financial domains. This is not to say that case-based meth-
ods cannot be used with time-series data. Certainly, there is a wealth of literature
on representing time-series data for use with case-based methods in a range of
application domains from agricultural science [3] to sports science [7]. Usually,
the approach taken is to use various feature extraction techniques to identify
landmark features from the raw time-series data; to effectively transform a raw
time-series into a more conventional feature-based representation that can be
used with standard similarity metrics. Similar approaches have been applied
in the financial domain [12] but, as mentioned above, the stochastic nature of
financial markets makes it difficult to effectively isolate useful case represen-
tations from market noise, which further complicates the similarity assessment
even given a suitable fixed representation.

Thus, in this work, our main technical contribution is to propose and evalu-
ate a novel approach to learning case representations for financial assets (com-
panies/stocks) using raw time-series data made up of historical daily returns.
We describe how to transform raw, time-series data into an embedding-style
representation of each stock/company; see for example [16,17] for examples of
embedding representations. We argue that this facilitates the capture of more
meaningful patterns and sub-patterns over extended periods of time, while facil-
itating the type of temporal alignment that is necessary during case comparison
and similarity assessment. We argue that this approach is well-suited to the
use of case-based and nearest-neighbour approaches in financial domains, be-
cause it can be used with a variety of standard similarity metrics, as well as
more domain/task specific metrics. We demonstrate its performance benefits in
a comparative evaluation of the industry sector classification task, an important
and practical benchmark problem in many financial applications [18].

The remainder of this paper is organised as follows. In the next section, we
review the use of CBR in the financial domain and with time-series data more
broadly, highlighting several common tasks and the approaches taken thus far, as
well as the important challenges that remain with respect to representation and
similarity assessment. Then, in Section 3 we discuss the details of our proposed
approach, by describing how raw time-series data, such as financial returns, can
be transformed into an embedding-based representation that is well suited to
case-based approaches. In Section 4 we evaluate our proposed approach by using
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it to classify companies into their market sectors based on their historical returns
data. We present the results of a comprehensive quantitative evaluation, which
compares our proposed representation to a variety of baseline and naive ap-
proaches. We demonstrate how our embeddings-based representations can offer
significant classification improvements, relative to more conventional representa-
tions of the raw time-series data, as well as state-of-the-art neural models [20,4].
In addition, before concluding with a summary of our findings and a discussion
of limitations and opportunities for further work, we present further qualitative
evidence in support of the proposed approach, by using our representations to
visualise the industry sectors that emerge from the clustering of our cases and
some examples of nearest-neighbours in the resulting representation space.

2 Background

CBR continues to offer many benefits even in a world of big data and deep
learning. Its so-called lazy approach to problem-solving, which retains the raw
cases, offers several benefits when it comes to transparency, interpretability, and
explainability [14]. And, the central role similarity plays – using similar cases
to solve future problems – helps to lift the computational veil that all too often
obscures the processes that drive more recent machine learning approaches [26].
That being said, the success of CBR is contingent upon the quality of the avail-
able cases and the suitability of the case representations and metrics used to
evaluate case similarity and drive inference. CBR approaches have been partic-
ularly effective in domains where cases are plentiful and where feature-based
representations are readily available. For example, in loan/credit approval tasks
[24], past decisions provide a plentiful supply of relevant cases, and each case can
be represented by salient features such as the value of the requested loan, the
debt-load of the applicant, the current earnings of the applicant, the purpose of
the loan etc.

However, in other financial domains the situation is more complex, especially
when the available data is sequential/temporal in nature, as is often the case.
When it comes to representation, several approaches have been proposed to
capture the salient features of financial time-series data, such as asset prices of
stock returns. They can be broadly categorised into three groups: (i) traditional
feature-based summaries, (ii) raw time-series, and (iii) machine learning-based
representations.

Feature-based representations of financial time-series tend to derive sum-
mary features from statistical moments and technical indicators [8]. For example,
time-series data can be represented by extracting key statistical features (e.g.
max/min values, mean and standard deviations etc.) over fixed time periods.
In addition, the financial domain has the advantage of the availability of sev-
eral widely-accepted technical indicators, which correspond to common patterns
observed in historical trading data such as on-balance volume, the accumula-
tion/distribution line, the average directional index, or the Aroon indicator [8].
These exotic-sounding indicators are among the tools of the trade for technical
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analysts and day traders and can be readily extracted from financial time series
data to provide a valuable source of domain-specific features.

In contrast to feature-based representations, some researchers have explored
the use of raw time-series data in CBR applications. Here, instead of computing
domain-specific features, the choice of similarity metric accounts for the temporal
nature of the data. One popular time series similarity technique used in CBR is
Dynamic Time Warping (DTW) [19], which measures the similarity between two
time-series by allowing for temporal shifts in alignment in order to optimise the
correspondence between the two time-series. While DTW has been successfully
applied in CBR systems across various domains [3], it is not directly applicable to
financial returns data, at least according to the type of tasks that are of interest
in this work, because allowing significant temporal shifts in alignment can distort
the relationships that exist between two stocks/assets; two stocks having similar
returns only constitutes a meaningful relationship if those returns are aligned
over the same period of time (in phase). More specifically, in the financial domain,
authors in [1] propose a geometrically inspired similarity metric for financial time
series, while [6] proposes a metric combining cumulative returns with an adjusted
correlation. However, as we show in Section 4, applying a similarity metric to
raw time-series data may not capture all of the relational information needed
leading to poorer performance in some tasks.

More recently, so-called distributed representations [16] and the use of em-
beddings have become important in the machine learning literature, especially
in natural language domains. Embeddings provide a way to translate a high-
dimensional representation (such as text) into a low-dimensional representation,
which can make it more straightforward to use machine learning techniques when
compared with high-dimensional, sparse vectors such as a one-hot encoded vo-
cabulary. Embeddings have been shown to do a good job of capturing some of
the latent semantics of the input by locating semantically similar examples close
to each other in the embedding space [16]. Indeed they have recently helped to
transform many approaches to natural language processing. Similar ideas have
been recently explored with financial time series data [4,5,20] and serve as state-
of-the-art baselines. In what follows, we show how to learn case representations,
by using the financial returns data of individual companies, and by mapping this
high-dimensional raw time-series data into a low-dimensional embedding space.
We do this by constructing a similarity-based representation of companies across
several time periods and using matrix factorization techniques to compute a low-
dimensional representation of these similarity patterns, which can then be used
as the basis for our case representation.

3 An Embeddings-Based Case Representation

In this section, we describe the technical details of our approach to transforming
raw time-series data into an embeddings-based representation. We will do this
using a dataset of stock market returns data (see below) for N = 611 stocks
spanning 2000-2018 [5]. Equivalently, we could use data for other types of finan-
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cial assets, or more generally a variety of alternative time-series data from other
domains. In our evaluation, we use daily, weekly, and monthly returns but the
approach described is, in principle, agnostic to granularity.

3.1 From Raw Cases to Sub-Cases

We can consider each complete time-series as a raw case so that, for example,
c(ai) corresponds to the full time-series for company/asset ai as in Equation 1.
Note that in this work the time-series provides so-called returns data rather than
actual pricing data. The former refers to the relative movement in stock price
over a given time period; for example, a return of 0.02 indicates that a price
increased by 2% over a given time period whereas a return of -0.005 indicates
that a stock price fell by 0.5% over a given time period. From this daily returns
dataset, we can also aggregate to weekly or monthly returns in a straightforward
manner by accumulating returns across longer periods.

c(ai) = {rai
1 , rai

2 , ..., rai

T } (1)

The first step in our approach transforms these raw cases into a set of sub-
cases such that c(ai, t, n) denotes the sub-sequence of n (the look-back) returns
ending at time t, as shown in Equation 2. For example, later we consider a
representation that is based on daily returns with a look-back of five (trading)
days (one trading week), which is based on sub-cases with five returns (n = 5).

c(ai, t, n) = {rai
t−n+1, r

ai
t−n+2, ..., r

ai
t } (2)

These sub-cases serve as useful and manageable sub-sequences of returns data
for the purpose of similarity comparison during the next step.

3.2 Generating the Count Matrix

Thus, each company/asset can be transformed into a set of sub-cases and for
each asset, look-back duration, and point in time there is a unique sub-case.
Next, given a suitable similarity metric, we can produce a N ×N matrix, S [t,n]

of pairwise similarities for any time t and look-back n, such that each element is
given by S [t,n]

i,j = sim
(
c(ai, t, n), c(aj , t, n)

)
. Taking stock ai as an example, we

can then use S [t,n] to identify the stock aj which is most similar to ai at time t
by finding the column with the maximum value in row i of S [t,n].

By repeating this procedure for every ai and t we can count the number of
times that every stock aj appears as the most similar stock to a given ai, across
all time points. The result is a so-called count matrix C such that Ci,j denotes
the number of time periods where stock aj appeared as the most similar stock
to ai; see Equation 3.

Ci,j =
∑
∀t

δ

(
j , argmax

ȷ̸̂=i
sim

(
cai,t, caȷ̂,t

))
(3)
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where δ(i, j) is the Kronecker delta function as defined in equation 4.

δ(i, j) =

{
0 if i ̸= j,

1 if i = j.
(4)

This approach to computing C can be viewed as a special case of a more
general approach to computing C[k]. Since C is based on counts that come from
the single most similar stocks, we can view it as C[k] where k = 1. More generally
then, C[k]

i,j denotes the number of times where stock aj appeared among the k
most similar stocks to stock ai. In other words, rather than limiting the count
matrix to the single most similar stocks we can include a hyper-parameter k to
accommodate a more generous counting function in order to encode information
about a greater number of pairwise similarities. In fact, this is an important
practical distinction as our preliminary studies found that representations based
on higher values of k performed better during our evaluation. As such for the
remainder of this work we will implicitly assume k = 50, which is the setting
used during the evaluation in the next section; we will continue to refer to C[k]

as C, without loss of generality.
In this way, C tells us about the most similar comparison stocks for a given

stock over time. As the time-series data fluctuates to reflect complex, noisy, and
unpredictable market changes, different stocks will appear among the top-k most
similar stocks at different points in time and for different periods of time. We
note that every value in C must be less than or equal to T , the number of time
points in our raw data, and that cases are not compared to themselves, so the
diagonal entries in C are fixed as 0.

As an aside, the count matrix may initially seem superfluous, with the temp-
tation to aggregate similarity scores directly over time instead of using this
more discrete approach. However, we found that direct aggregation yielded infe-
rior representations evidenced by poorer downstream performance on financial
classification tasks. We hypothesise that the benefit of the proposed approach
stems from filtering out some of the noise inherent in market data that make for
spurious raw similarities.

3.3 Generating Embedding Representations

We can use the count matrix to generate our final case representation by gen-
erating an embedding matrix E ∈ RN×d (randomly initialised) where d is a
hyperparameter to determine the dimensionality of the embedding, and N is
the number of companies as before. If Ei ∈ Rd denotes the ith row of E , which
represents the embedding for stock ai, then we can learn the N × d embedding
matrix, E , using matrix factorization techniques by minimising the loss function
shown in Equation 5 with respect to E . This is related to the problem of learning
user and item embedding matrices (U and V respectively) from a rating matrix
R, in recommender systems, by optimising for R = UV T [11], except that here
we are producing a case embedding matrix (E) based on C = EET . However,
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since we are only optimising a single matrix we must adjust the approach to
exclude the diagonal entries of C from the optimisation.

L =
∑

i∈{1,...,N}

∑
j ̸=i

(
Ci,j − ET

i Ej
)2

(5)

To complete the process of learning case embeddings there are a number of
routine adjustments that need to be made in order to deal with the type of
overfitting and scaling problems that may occur due to the presence of outliers
and skew within the distribution of values in the count matrix. First, to prevent
the learned embeddings from overfitting to outliers, we define an upper bound
for values in C as the 99.9th percentile of off-diagonal elements in C, clipping
any values in C above this boundary to the boundary; this produces a clipped
matrix which we refer to as C̃. Second, to reduce skew in C̃ we apply a standard log
transformation in Equation 6. Finally, we apply min-max scaling to the resulting
clipped and transformed count matrix, and regularization to the embedding
vectors, which gives the final loss function as shown in Equation 7. In this final
loss function. µ(·) represents the min-max scaling of a matrix over all elements,
f(·) represents the log transformation in Equation 6 and λ is the regularization
rate, which takes a value of 0.1 in our later experiments.

f(x) =

(
1

2
log(1 + x)

)2

(6)

L =
∑

i∈{1,...,N}

∑
j ̸=i

[
µ
(
f(C̃i,j)

)
− ET

i Ej
]2

+ λ ·
(
||Ei||2 + ||Ej ||2

)
(7)

3.4 Discussion

In summary then, the above procedure transforms a raw, (N × T ) times series
dataset into a more compact (N × d, where d << T ) matrix of embeddings
vectors. Each company case corresponds to a single d-dimensional embedding
vector; that is, a row of E with its d feature values. This has the advantage
of greatly reducing the dimensionality of our cases (d << T ) but, in addition,
we also hypothesise that the manner in which these embeddings have been pro-
duced means that they will capture more useful information than the raw returns
data alone, or than more traditional summary features, by surfacing important
temporal similarity information about the relationship between stocks.

It is worth noting too that this approach serves as a framework for generating
case representations with different levels of granularity, context windows/look-
back durations, and different similarity metrics. For example, it may be useful to
focus on daily returns over a 5-day look-back period (sub-cases that correspond
to single trading weeks) for one task and weekly returns over a 12-week look-
back period for a different task. Or it may be useful to consider ways in which
the resulting embedding representations can be combined to provide even richer
representations. For example, the Orthogonal Procrustes Problem [22] offers a
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robust solution for aligning embeddings produced by different models. Given two
embedding spaces A and B, the objective is to find an orthogonal transformation
matrix Ω, most closely mapping A to B. Mathematically, this can be expressed
as the minimization problem argminΩ ∥ΩA−B∥F subject to ΩT . In principle,
such an approach may facilitate combining case representations produced from
different sub-cases but we leave this as a matter for future work.

4 Evaluation

So far, this paper has presented a novel approach for learning embedding-based
case representations from financial time-series data, specifically the daily, weekly,
and monthly returns data from stocks. We argue that this approach allows us
to encode important temporal relationships between financial assets, which are
otherwise difficult to capture in more traditional case representations (such as
summary, raw feature-based or fixed, attribute-value style representations). In
this section, we demonstrate the value of this new approach by evaluating the
efficacy of these representations using several qualitative and quantitative tech-
niques. In particular, we provide the results of a comparative evaluation of our
embeddings-based representations versus more conventional CBR approaches, as
well as recently proposed domain-specific methods [4,20], in a common financial
domain classification task.

4.1 Dataset and Methodology

In this evaluation, we evaluate the performance of several approaches to industry
sector classification using a real-world, publicly available dataset. This is a chal-
lenging classification task in its own right, which is instrumental to a multitude
of downstream tasks in the financial domain [18].

Evaluation Dataset. As mentioned previously, the dataset used in this work is
a publicly available dataset of returns data for 611 individual company stocks,
spanning the years 2000-2018 [4]. Each stock is associated with a time-series
of stock returns (relative changes in price) over daily, weekly, or monthly time
periods. The dataset also contains additional (meta) data about each company
stock, including industry sector classification data, which will be used in this
evaluation. It is important to note that the industry sector labels in the dataset
are not orthogonal (companies can operate across a number of sectors), and that
they are assigned subjectively by analysts at the Global Industry Classification
Scheme (GICS). As a result, in the classification task to come, perfect agreement
with ground-truth labels is not a realistic goal, but high agreement serves as a
strong indication that the representations are capturing useful information.

Industry Sector Classification Task. For this evaluation we will perform
industry sector classification, which involves predicting a company’s primary in-
dustry sector, based on their returns time-series data. This is a vital task for
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many types of financial and economic analyses — identifying peers and com-
petitors, quantifying market share and benchmarking company performance —
none of which would be possible without sector classification schemes [18]; no-
tably approximately 30% of publications in the top-three finance journals make
use of industry classification schemes [27]. In this work, our primary focus is
to use a CBR approach to classify stocks, using different representations (see
below) to produce different case-base configurations. In each configuration, the
problem description of a case corresponds to its returns data (whether using a
raw, summary, or embeddings representation) and the solution part of a case
corresponds to the stock’s sector classification. Then, for a target/query stock
aq we identify its 5 nearest-neighbours, using a straightforward Euclidean or
correlation metric (as given in Table 1), with simple majority voting to identify
the predicted industry sector for aq.

Algorithmic Configurations. In this evaluation we will test a number of dif-
ferent approaches, each distinguished according to the representation used for
cases and the granularity of the returns data (daily, weekly, monthly) used. Ar-
guably the simplest approach is to generate a feature-based representation based
on summary features extracted from the raw returns data. These summary fea-
tures include standard statistical features such as mean, min, max, volatility,
25th percentile, median, 75th percentile calculated over the daily, weekly and
monthly returns data. These (×3) configurations are referred to as Summary in
what follows; see the first 3 rows in Table 1. We also implement two versions
using the raw returns data as case representations (Raw) one set (×3) uses a
Euclidean distance metric (referred to as E in Table 1) when computing the k
nearest-neighbours, and another (×3) uses Pearson’s correlation to identify the k
nearest-neighbours (referred to as P in Table 1); the latter being a more common
similarity metric to use in financial domains. Finally, we test several (×18) vari-
eties of our newly proposed embeddings-based representation (Embedding), with
varying look-back durations for the daily, weekly, and monthly returns; the final
three sections of Table 1. In particular, we vary the similarity metric used when
computing the count matrix to look at the effect of using Euclidean distance
(E) versus Pearson’s correlation (P ) versus the more recent hybrid metric (H),
which combines Euclidean distance with a modified correlation component [6].
We note that for all of these embedding representations, the dimensionality is
chosen as d = 15 and the standard Euclidean distance metric is used during the
subsequent kNN classification (with the exception of raw with correlation) to
enable a like-for-like comparison with the other baselines. In addition, we eval-
uate the proposed approach against non-CBR baselines including more general
time series classification approaches [9,15,21], as well as domain-specific neural
methods [4,20].

Evaluation Metrics. For each of these different variations, we use a standard
5-fold cross-validation to generate and test the classifications produced. For each
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variation, we produce a standard classification report3 which provides precision
(the ratio of true positives to the sum of true and false positives), recall (ratio
of true positives to the sum of true positives and false negatives), and F1 (the
harmonic mean of precision and recall). The reported values are the weighted
average for each class weighted by the number of samples in each class. There
are 11 sector classes in the dataset: Basic Industries, Capital Goods, Consumer
Durables, Consumer Non-Durables, Consumer Services, Energy, Finance, Health
Care, Public Utilities, Technology, Transportation.

4.2 Results

The results are presented in Table 1. Each row corresponds to a specific algo-
rithmic configuration and shows the representation used (Summary, Raw, and
Embeddings), the granularity of the returns data (Daily, Weekly, Monthly) and
the similarity metric used for the final kNN classification task (Euclidean or Cor-
relation). In addition, for the Embedding representations, we also include settings
for the relevant look-back periods. Finally, each configuration is associated with
an overall weighted precision, recall, and F1 score as mentioned previously. Ad-
ditionally, non-CBR baselines are reported in the lower section of the table with
the same evaluation metrics.

A number of performance patterns are evident in these results. The poor-
est performances are associated with the Summary representations (F1≤ 0.15).
This is not surprising given that these representations abstract away a lot of
the detail that exists in the returns data. While it may be possible to improve
upon these representations, for example by including more domain-specific tech-
nical features, they provide a useful naive baseline against which to evaluate the
improvements of more sophisticated approaches. The more reasonable Raw rep-
resentations perform considerably better, with F1 values as high as 0.43 found
among the variations that use a correlation-based similarity metric, arguably the
most popular metric in the financial literature. In general, these Raw variations
using correlation (Raw+P) out-perform the corresponding representations using
Euclidean distance (Raw+E ); the former report with 0.33 ≤ F1 ≤ 0.36 com-
pared to 0.41 ≤ F1 ≤ 0.43 for the latter. Thus, the Raw+P variations serve as
a useful baseline against which to evaluate the efficacy of the new embeddings-
based representations.

Most of the embeddings-based representations outperform these Raw+P base-
lines, regardless of granularity or look-back duration. And, we note too that
shorter look-back periods are associated with better performance than longer
look-back periods. As further evidence that correlation-based similarity is more
appropriate for financial returns data than Euclidean metrics, we note that the
embeddings-based representations that are learned using correlation-based sim-
ilarity (Embedding + P with 0.41 ≤ F1 ≤ 0.64) out-perform the corresponding

3 In this work all code is written in Python and uses the standard SciKit Learn imple-
mentation of kNN, cross-validation, and classification reporting. Non-CBR baselines
were implemented in sktime where available, and PyTorch in other cases.
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Table 1: Results for the case-based industry sector classification task for each of
the 27 variations under consideration.
Representation kNN Metric Granularity Lookback Precision Recall F1

Summary E Daily — 0.11 0.15 0.12
Summary E Weekly — 0.13 0.15 0.13
Summary E Monthly — 0.15 0.18 0.15

Raw E Daily — 0.46 0.39 0.33
Raw E Weekly — 0.45 0.43 0.36
Raw E Monthly — 0.39 0.40 0.33

Raw P Daily — 0.56 0.48 0.41
Raw P Weekly — 0.50 0.49 0.42
Raw P Monthly — 0.54 0.49 0.43

Embedding + E E Daily 5 0.67 0.62 0.63
Embedding + E E Daily 22 0.59 0.55 0.55
Embedding + E E Weekly 4 0.60 0.56 0.57
Embedding + E E Weekly 52 0.44 0.36 0.38
Embedding + E E Monthly 12 0.38 0.31 0.32
Embedding + E E Monthly 24 0.35 0.29 0.31

Embedding + P E Daily 5 0.68 0.62 0.64
Embedding + P E Daily 22 0.67 0.64 0.64
Embedding + P E Weekly 4 0.66 0.60 0.61
Embedding + P E Weekly 52 0.46 0.39 0.41
Embedding + P E Monthly 12 0.51 0.46 0.47
Embedding + P E Monthly 24 0.50 0.42 0.44

Embedding + H E Daily 5 0.69 0.65 0.66
Embedding + H E Daily 22 0.65 0.62 0.62
Embedding + H E Weekly 4 0.66 0.60 0.61
Embedding + H E Weekly 52 0.50 0.44 0.46
Embedding + H E Monthly 12 0.56 0.50 0.51
Embedding + H E Monthly 24 0.49 0.43 0.44

Non-CBR Methods Granularity Precision Recall F1

Shapelet Transform [9] Daily 0.39 0.46 0.40
WEASEL [21] Daily 0.50 0.47 0.47

Canonical Interval Forest [15] Daily 0.57 0.56 0.52
Financial Time Series Embeddings [4] Daily 0.62 0.60 0.60

Financial Correlation Graph Embeddings [20] Daily 0.64 0.60 0.61

representations that were based on Euclidean distance (Embedding + E with
0.31 ≤ F1 ≤ 0.63). Furthermore, the hybrid metric introduced by [6], which
combines elements of Euclidean distance and correlation, tends to perform as
well as, and usually better than, the embeddings-based representations using
correlation alone (Embeddings + H with 0.44 ≤ F1 ≤ 0.66). Indeed, the embed-
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Table 2: Examples of top-3 nearest neighbours for given query stocks
Query Stock

Sector - Industry 3 Nearest Neighbours - Sector - Industry Similarity

JP Morgan Chase
Finance

Major Bank

Bank of America Corp - Finance - Major Bank
State Street Corp - Finance - Major Bank

Wells Fargo & Company - Finance - Major Bank

0.98
0.98
0.97

Microsoft
Technology
Software

IBM - Technology - Computer Manufacturing
HP - Technology - Computer Manufacturing

Adobe - Technology - Software

0.95
0.93
0.92

Walmart
Consumer Services
Department Store

Costco - Consumer Services - Dept Store
Kroger - Consumer Services - Food Chains

McDonalds - Consumer Servies - Food Chains

0.89
0.82
0.78

dings produced with this hybrid metric always outperform the Raw+P baseline
regardless of granularity and look-back.

The domain agnostic non-CBR methods proposed in [21,15] outperform the
raw and summary baselines, while the recent task-specific approaches [20,4] are
stronger again (0.60 ≤ F1 ≤ 0.61). However, the proposed approach remains the
strongest performer.

4.3 Discussion

These results support the hypothesis that the proposed embeddings-based repre-
sentations are capable of capturing more useful information from the time-series
returns data than more conventional representations. The best proposed repre-
sentation is associated with an F1 score of 0.66 compared to just 0.43 for the
best CBR baseline representation and 0.60/0.61 for the task specific baselines.
Moreover, the proposed representation is well-suited for use in a CBR setting
which, due to the retrieval of existing labelled cases, offers further advantages
when it comes to interpretability.

By way of further explanation, Table 2 shows some examples of the near-
est neighbours that are identified for 3 different query companies (JP Morgan
Chase, Microsoft and Walmart) using an embeddings-based representation. For
each query company, we summarise the top-3 nearest neighbours, the sector class
(e.g. Finance), a finer-grained industry label (e.g. Major Bank), and their corre-
sponding similarities to the query stock. The results align with our intuitions and
in each case, the nearest neighbours match the query’s industry sector (Finance,
Technology, and Consumer Services, respectively).

As another example, Figure 1 shows a 2D visualisation of the clusters of
companies that emerge when using the embeddings-based representations. Each
node corresponds to an individual stock and an edge is created between two
stocks if their similarity exceeds some minimum threshold (0.75 in this exam-
ple). Then, a force-directed graph drawing algorithm [10] is used to position the
nodes in such a way as to optimise their placement in the resulting similarity



A CBR Approach to Company Sector Classification 13

Finance

Energy

Healthcare

Technology

Public Utilities

Williams 
Company

Fig. 1: Visualization of embedding clustering. A subset of sectors is used for
visual clarity.

space. The nodes have been colour-coded based on their ground-truth industry
sectors and we can see clearly how nodes from the same industry sector tend to
be clustered together, indicating that the embeddings-based representations are
doing a good job of capturing this relationship; as an aside it is worth noting that
the embedding representations also exhibited clear clustering using visualisation
approaches such as PCA and t-SNE.

We also observe some interesting patterns in the graph that are not imme-
diately obvious from the sector labels. For example, a node from the Public
Utilities sector (indicated in orange) appears as an outlier in the Energy cluster
(green). This node, highlighted in Figure 1, is an energy supply company called
Williams Company, whose primary business is natural gas processing and trans-
portation. Thus, although it has Public Utilities classification in our dataset, the
case representation facilitates recognising its similarity with the Energy business
and it is positioned accordingly.

Visualisations such as this are powerful tools for technical analysts to bet-
ter understand the evolving structure of modern markets, but to be useful they
must rely on representations that are capable of reasonably accurately capturing
meaningful relationships between different stocks and companies. The case rep-
resentation proposed here should help to improve the utility of such tools because
it does a better job at recognising the relationships that exist between compa-
nies but that may be obscured by the raw time-series data and not captured by
traditional subjective industry classification schemes.
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5 Conclusion

Using CBR with time-series data presents a number of challenges, not the least
of which is how to generate case representations that are capable of capturing
the complex temporal behaviour of the underlying data. Time-series data are
becoming more and more common in the modern world with the increasing
ability to capture and store large amounts of real-time, real-world data. This
is especially true in the financial domain and this work, we have described the
development of a novel representation of financial time-series data that is well
suited to CBR. We have demonstrated the effectiveness of this representational
approach on the important task of industry sector classification, in comparison to
several CBR baselines as well as recent task-specific neural methods. The results
indicate that the proposed approach offers performance benefits compared to
these alternatives.

There are several opportunities for additional work arising from this initial
study. For example, no comprehensive hyper-parameter tuning has been carried
out for the proposed representations and it is likely that by varying key parame-
ters, such as the embedding dimensionality (d), k, and λ, further improvements
could be found; the fact that significant improvements were obtained for the
“default” settings used here speaks to this. And, although the focus of this work
has been on the use of the proposed representation in a CBR context, the repre-
sentation should be equally applicable as a training data representation for other
machine learning models. In fact, preliminary results, not provided here for rea-
sons of space and clarity, suggest further performance gains if the embeddings
are applied within a non-CBR classifier.

Within the financial domain, there are many other tasks that can be explored
as targets for this type of representation. For example, risk management and
portfolio optimisation [4] are obvious candidates in this regard. Moreover, given
the proliferation of time-series data across many domains (clinical health [2],
exercise and fitness [7] etc.) it will be interesting to assess whether this type of
representation can add value across different task types.

Acknowledgements: This publication has emanated from research con-
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