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Abstract Modeling similarity measures in Case-Based Reasoning is a
knowledge-intensive, demanding, and error-prone task even for domain
experts. Visualizations offer support for users, but are currently only
available for certain subdomains and case representations. Currently,
there are only visualizations that can be used for local attributes or
specific case representations. However, there is no possibility to visual-
ize similarities between complete processes accordingly so far, although
complex domains may be present. Therefore, an extension of existing
approaches or the design of new suitable concepts for this application
domain is necessary. The contribution of this work is to enable a more
profound understanding of similarity for knowledge engineers who create
a similarity model and support them in this task by using visualization
methods in Process-Oriented Case-Based Reasoning (POCBR). For this
purpose, we present related approaches and evaluate them against de-
rived requirements for visualizations in POCBR. On this basis, suitable
visualizations are further developed as well as new approaches designed.
Three such visualizations are created: (1) a graph mapping approach, (2)
a merge graph, and (3) a visualization based on heatmaps. An evalua-
tion of these approaches has been performed based on the requirements
in which the domain experts determine the graph-mapping visualization
as best-suited for engineering of similarity models.

Keywords: Visualization · Explanation · Similarity · Process-Orien-
ted Case-Based Reasoning · Explainable Case-Based Reasoning

1 Introduction

In Case-Based Reasoning (CBR) [1], cases are retrieved by approximating the
a-posteriori utility of a case with mostly knowledge-intensive a-priori similarity
measures [5, 37]. Developing such similarity measures can be performed manu-
ally by a domain expert or learned automatically, e. g., with machine learning
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methods [18,29]. Whereas automatically generated similarity measures limit the
knowledge acquisition and modeling effort, the entire required knowledge cannot
always be learned and, thus, integrated into the similarity measure. For this rea-
son, similarity measures are mainly created manually by a knowledge engineer,
based on information from domain experts. However, this knowledge-intensive
acquisition process is a demanding and error-prone task, since the knowledge
from the domain expert must be acquired, transferred, and, finally, encoded by
the knowledge engineer during similarity measure development. This especially
holds for complex and deeply nested measures based on the local-global princi-
ple. For instance, a global similarity measure usually aggregates individual local
similarities between several attributes, which, in turn, use further similarity mea-
sures for different data types [5], so that this nested structure can be cluttered
for a knowledge engineer. In this context, a profound understanding of the sim-
ilarity and its aggregation results in a better explainability that increases trust
and transparency of the CBR system [12]. Although similarity-based retrieval is
one of the most important phases in CBR, and, thus, similarity measures should
be well-defined, the development process is only weakly supported by current
research (e. g., [3]). Therefore, the knowledge engineer should be supported in
manual modeling of complex and knowledge-intensive similarity measures. An
understanding of the similarity is necessary for this, including both the value of
the similarity itself and its calculation.

One approach for making similarities more accessible and providing con-
fidence in CBR applications is visualization [3]. Visualizations map discrete
data to a visual representation and support users in problem-solving [26]. In
the context of Explainable Case-Based Reasoning (XCBR), they are successfully
used in CBR domains to investigate similarities between simple case representa-
tions [39]. Of particular interest is to make complex similarities, e. g., based on
nested similarity measures, accessible using visualizations. Another application
area is Process-Oriented Case-Based Reasoning (POCBR) [31] in which CBR
methods are applied to procedural experiential knowledge. Cases in POCBR are
expressed as complex graph representations, and similarity assessment is mainly
performed by aggregating several local similarities on a global level. Especially
these complex case representations are currently not supported by any visual-
ization method. For this purpose, this paper presents how visualizations can be
used in POCBR and, in general, for more complex case representations that go
beyond attribute-value-based cases. To determine the eligibility of a visualiza-
tion for this purpose, we survey fundamental requirements from CBR developers.
We present three visualization methods for complex cases in POCBR based on
these requirements, namely a Graph Mapping, a Merge Graph, and a Heatmap
approach. We compare them regarding the requirements in an experimental eval-
uation to validate their suitability. The key question for CBR developers in this
evaluation is how well which requirement is being fulfilled by the corresponding
visualization method and, whether, the approaches provide a better explainabil-
ity of similarities for knowledge engineers.
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The paper is structured as follows: First, an overview of the necessary foun-
dations of POCBR is provided, and related work is discussed (see Sect. .2). Then
requirements for visualizations in POCBR are established by interviews with ex-
perts and from literature (see Sect. 3). Based on these requirements, applicable
approaches from the literature are examined and adapted for the use in POCBR
(see Sect. 4). The suitability of the approaches is determined based on a user
evaluation (see Sect. 5). Finally, the paper is concluded and areas for future work
are discussed (see Sect. 6).

2 Foundations and Related Work

In this section, the semantic workflow graph representation as well as the sim-
ilarity assessment between such workflow graphs is introduced (see Sect. 2.1).
Afterward, the research topic of this work is differentiated to other works, pre-
senting approaches that are thematically relevant or not applicable w. r. t. this
question (see Sect. 2.2 and Sect. 2.3).

2.1 Semantic Workflow Representation and Similarity Assessment

The proposed visualizations address process-oriented cases. In the research area
of POCBR, various types of graphs exist [20] as well as multiple applicable
similarity measures for these [9, 34]. To be able to perform the requirements
analysis and design the visualizations, a concrete form of case representation
must be addressed. So, this paper uses semantic workflow graphs represented
as NEST graphs [7] for this purpose and aims at similarity measures based on
graph matching.
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Fig. 1. An Exemplary Cooking Recipe represented as NEST Graph.

A NEST graph is a semantically labeled directed graph [7] represented as
a quadruple W = (N, E, S, T ), whereby N is a set of nodes and E ⊆ N × N
a set of edges. T : N ∪ E → Ω assigns a type from Ω to each node and each
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edge. Furthermore, S : N ∪ E → Σ allocates a semantic description from a
semantic metadata language Σ to each node and edge and annotates the graph
structure with semantic knowledge. Each NEST graph is part of a case base,
which is denoted as W ∈ CB. In Fig. 1, an exemplary NEST graph is shown
that represents a simple cooking recipe with different node and edge types and
an exemplary semantic description.

For the similarity computation between two such NEST graphs, suitable sim-
ilarity measures for this case representation are required. Bergmann and Gil [7]
have developed a similarity measure that computes this similarity based on the
local-global principle [5, 10]. Here, the global similarity is composed of the local
similarities computed between the individual graph elements, based on corre-
sponding similarity measures [7]. The local similarity is always 0.0 if the types
of the graph elements to be compared are not identical. If the types are equal,
a similarity calculation is initiated, which calculates a similarity value based on
the semantic descriptions. When computing the global similarity, several possi-
ble mappings of the query and case graphs to each other exist. To determine the
suitability of a case, the highest possible global similarity value must be calcu-
lated, which is based on the mapping that leads to the highest local similarities.
This mapping is found by conducting an A* search in the solution space, for
which various heuristics are used. An optimized form of this search procedure
is presented by Zeyen and Bergmann [44]. The described similarity assessment
based on the local-global principle and the large search space of possible map-
pings of graph items make it difficult for a knowledge engineer to understand
the composition of a similarity value on a conceptual level.

2.2 Distinction from Related Explanation Approaches

This contribution uses visualizations as a method to explain similarities in CBR
applications. Thereby, the proposed approach differs from thematically related
work in the area of XCBR. In some publications of this research field, CBR
is utilized as a method to explain other artificial intelligence approaches, such
as Kenny and Keane [21], Nugent and Cunningham [33], Gates et al. [15] or
Recio-García et al. [36]. In other XCBR work, visualizations are used to explain
similarity measures, as in Batyrshin et al. [4]. This work differs in that it is not
the measure itself that is to be visualized, but the individual similarity value.
Furthermore, visualizations for similarity distributions are used, for example, in
case bases, as in Rostami et al. [38] or Namee and Delany [32]. Other works deal
with visualizing retrieval results, such as Lamy et al. [23] or Paola and Bach [27].
These approaches visualize the similarity distribution in a case base or from a
query to the best retrieval results, but they do not offer an explanation for the
respective similarities, which are considered in this work.

2.3 Approaches to Visualize Similarities Between Graphs

The following methods visualize similarities between graphs and are, thus, iden-
tified as thematically relevant approaches. Bach and Mork [3] examine visu-
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alizations of similarities in CBR. The focus of their work is the visualization
of similarity measures during the retrieval phase. In the underlying similarity
computation, the local-global principle is applied, to which this approach is re-
stricted. Massie et al. [28] address explanations in CBR by visualization. They
aim to extend the explanation provided by the CBR system in the form of a sin-
gle case with a similarity value to make the knowledge more accessible to users.
For this purpose, they visualize the similarities of cases representing lists of nu-
merical values in coordinate diagrams. The merge graph designed by Andrews et
al. [2] stems from the field of Business Process Visualization. A merged graph is
computed from two input graphs and the corresponding similarities between the
graph nodes, allowing a visual comparison of the two graphs. For the merging
procedure, it is required that the two graphs are pretty similar to have useful
overlaps in the merged graph. The authors also mention that this approach is not
infinitely scalable and that the computation of the graph layout results in a high
computational complexity. Ivanov et al. [19] deal with an automatic comparison
of business processes in the field of Business Process Management. They present
a tool that can be used to detect and visualize discrepancies in two processes to
check them for conformance. It can also help to find duplicates or to classify a
new process. When mapping two processes onto each other, the similarity can
be computed as a label match, a structural similarity or a graph edit distance.
Also related is the general approach of heatmaps [42], which is a data visualiza-
tion technique that uses colors and their intensity to visually indicate clusters
in a two-dimensional table. These are used in CBR to show how the similarity
values of one case relate to all other cases in the case base [30]. The use of such
heatmaps can also be adapted to other domains. The approaches presented in
this section are evaluated in Sect. 4.1 based on the elicited requirements.

3 Requirements for Visualization

To review the related approaches presented in Sect. 2.3 regarding their suitabil-
ity to be used in POCBR, a list of requirements is needed. These requirements
can also be used to derive necessary extensions for the existing approaches or to
provide a guideline for the creation of a new visualization technique. Initially,
established requirements are identified by a literature research and adapted for
the application area of this contribution. Due to the small number of publica-
tions in this area, we derived further requirements from researchers, who are
involved in this area, through a focus group interview [35]. We conducted this
method of elicitation with a group of five people. First, they were confronted
with the requirements that are collected based on the literature. Then, two vi-
sualization approaches from the literature according to Bach and Mork [3] and
Andrews et al. [2] (see Sec. 2.3) were presented, whereupon the researchers had
to justify why they found the approach suitable or not suitable in detail. In the
interview, the participants discussed their answers, but overall agreed on the
desired requirements.
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Based on the literature review and the focus group interview, the following
seven requirements are derived:

Req. 1 Explanation for Resulting Similarity: The visualization should
comprehensibly justify the calculated similarity value and its composition. This
is inspired by the goal of justification according to Sørmo et al. [41] as well as
by the requirements for XCBR systems of Hall et al. [16].
Req. 2 Representation of Process Data: The visualization must support a
case representation of processes, in the context of this contribution, as semantic
graphs [7]. In addition to representing processes, the visualization approach must
be able to show the similarities between them. So, the similarity measure used at
the global level for process-oriented cases must be included in the visualization.
Req. 3 Representation of Similarities Between Graph Components:
The visualization should include the local similarities by explaining their values
and the measures used for their calculation. This is analogous to the requirement
of Hall et al. [16] that explanations in XAI systems should be provided on the
local level. If no local information contributes to the similarity computation,
then no similarities need to be visualized there.
Req. 4 Visualization From the Query’s Perspective: The explanation of
the visualization should be from the query’s perspective. For example, if a case
contains an element that is not considered in the global similarity calculation, it is
irrelevant knowledge in this context. This should be visually marked accordingly.
Req. 5 Representation of All Features Involved in the Similarity and
of their Influence on the Similarity: The visualization should represent all
features involved in the composition of the similarity. This is inspired by the pri-
oritization of decision information by Hall et al. [16], according to which appro-
priately relevant features and feature relationships are selected for representation
in the explanation. In the context of POCBR, this refers to the influence of these
elements on the overall similarity, which can also be explored interactively. This
requirement is specified in four sub-requirements, which were identified in the
focus group interview.
Req. 5a Marking All Similarities With a Desired Value: The visualiza-

tion should mark all similarities with a defined value, so these local similarities
can be considered in detail. For example, the origin of similarities that values
are very high like 1.0 or very low like 0.0 can be investigated.
Req. 5b Flexible Changes of Similarity Measures: To be able to esti-

mate the influence of used similarity measures on the overall similarity value,
the visualization should provide an interactive element that allows a flexible ad-
justment of these measures. This allows changes to the similarity model to be
tracked. These adjustments should be possible on both, the global and the local
level.
Req. 5c Filter Functions for Graph Elements: The visualization shall

provide a function to hide selected types of graph items. This should make it
possible to better assess the influence of certain graph item types on the overall
similarity.
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Req. 5d Pre-definition of Mappings: In the visualization, it should be pos-
sible to manually specify mappings based on which a new similarity calculation
is performed. This is a functional requirement where the developer can manu-
ally check the influence of mapping pairs. It should only be possible to set valid
mappings according to the definition of the semantic graphs [7].
Req. 6 Pairwise Visualization of Similarities: The similarity to be visual-
ized always consists of a pair of query and case to ensure its traceability. For
example, this would not occur, if the similarity of a query to an entire case base
is visualized. The elements of the tuple are restricted to the query and case only.
Req. 7 Relation to Other Cases: The visualization should classify the sim-
ilarity within the case base as well as in comparison with specific other cases.
This requirement comes entirely from the focus group interview and is specified
in two sub-requirements.
Req. 7a Classification Within Similarities of the Case Base: The sim-

ilarity value should be ranked within the similarity distribution of the case base
and visually represented. This allows to detect if all similarity values are close
together or widely distributed, thus, identifying necessary adjustments to the
similarity model for higher discriminatory power.
Req. 7b Comparison With Other Cases: The visualization shall include

multiple pairwise visualizations to provide comparison to other similarity calcu-
lations. For this purpose, it should be possible to compare several visualizations
in parallel. This should be used to identify possible adjustments in the similarity
model that would not be noticeable when inspected individually.

4 Techniques for Similarity Visualization

Based on the presented requirements, the identified publications from the re-
lated work (see Sect. 2.3) are examined for their suitability, and new visualiza-
tion forms are considered (see Sect. 4.1). The graph mapping approach is then
presented (see Sect. 4.2), followed by the merge graph approach (see Sect. 4.3)
and the heatmap approach (see Sect. 4.4)1.

4.1 Suitable Visualization Approaches

Based on the presented requirements, the approaches introduced in Sect. 2.3
are reviewed for their suitability for use as visualizations for POCBR. The
approaches of Bach and Mork [3] and Massie et al. [28] are identified as not
suitable because they could not fulfill Req. 2 of representing the process data.
Both approaches are constructed too restrictively for the respective form of case
representation, and it is not possible to convert the cases into a suitable form
of representation. For the visualization of local similarities demanded in Req. 3,
1 A detailed description of all visualization approaches, includ-

ing various mock-ups, is available at https://git.opendfki.de/easy/
explanation-of-similarities-in-pocbr-by-visualization/-/blob/main/Detailed_
Description_of_Visualization_Approaches.pdf

https://git.opendfki.de/easy/explanation-of-similarities-in-pocbr-by-visualization/-/blob/main/Detailed_Description_of_Visualization_Approaches.pdf
https://git.opendfki.de/easy/explanation-of-similarities-in-pocbr-by-visualization/-/blob/main/Detailed_Description_of_Visualization_Approaches.pdf
https://git.opendfki.de/easy/explanation-of-similarities-in-pocbr-by-visualization/-/blob/main/Detailed_Description_of_Visualization_Approaches.pdf
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these approaches are suitable under the condition that an appropriate data struc-
ture is available there. The approach of Ivanov et al. [19] does not meet Req. 3
of representing the similarities between graph components, as it only supports
similarity measures such as a graph edit distance that does not consider local
similarities in its pure form. Since in this contribution only similarities based
on a mapping of graphs to each other are considered, this requirement is not
fulfilled. The merge graph approach according to Andrews et al. [2] and an ex-
tended heatmap approach, which represents the graph elements in the tables,
can generally fulfill all requirements. Some requirements need further extensions
to be fulfilled, like Req. 5b, Req. 5c and Req. 7. Thus, based on the requirements’
analysis, the merge graph and heatmap approaches are identified as suitable for
visualization in POCBR.

Due to the lack of suitable related work, attempts are made to design further
visualization approaches from scratch. Thereby, one visualization is designed
fundamentally new: the graph mapping approach. There are no comparable ap-
proaches to this visualization form in the literature. Some existing ones follow a
similar basic idea, for example in psychology by Xuu [43] or for the visualization
of similarity graphs by Rostami et al. [38]. But their adaptation for the appli-
cation field in POCBR would be so extensive that it would also become a new
approach.

These three visualization approaches are considered according to the require-
ments and appropriate adjustments are made to satisfy them. All three methods
are designed according to Shneiderman’s Visual Information-Seeking Mantra [40]
which is a common method in the field of information visualization [11]. It spec-
ifies that a visualization should first give an overview of all the available infor-
mation [40]. Then, it should be possible to zoom and filter, so that ultimately
details are provided on demand. The visualizations are illustrated using various
static mock-ups to present their design and indicate the functionalities. A simple
comparison between two short recipes is used as an example.

4.2 Approach of Graph Mapping

A mock-up for the graph mapping approach can be found in Fig. 2, where the
display of multiple visualization instances described in Req. 7b is omitted for a
clearer overview. This is given by a configurable number of instances that are
displayed below each other. In the graph mapping visualization, the similarities
are represented as directed edges starting from the query. These contain the
information about the local similarities and their composition. The thickness
of the edges provides additional information about the similarity, which is a
common method in information visualization techniques [14]. When displaying
edges, a distinction is made according to whether they are mappings between
nodes or edges. The mapping edges between nodes are solid, the edges between
edges are dashed.

The visualization has a header that contains a menu with general information
about the case and the similarity calculation, where the global similarity measure
can also be adjusted, according to Req. 5b. In addition, there is the possibility to
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Fig. 2. Overview of the Graph Mapping Approach.

hide nodes or edges, to display similarity values on the edges, as well as to display
only similarities whose values are within a given interval according to Req. 5a. A
second menu contains the filter functions for the different graph element types
according to Req. 5c. Next to it, a histogram illustrates the similarity distribution
in the case base according to Req. 7a. Above this, a search function is provided
that can be used to find elements from the query and case, for example based
on their ID or a textual attribute expression.

In the graph mapping approach, the query graph as well as the case graph are
each aligned according to the longest path algorithm [13]. The mapping edges
always run between the elements mapped onto each other and are represented
with sufficient spacing. The example in Fig. 2 is the optimal case, where all edges
are parallel, which is not true for most examples. If 50% or more edges run in
the opposite direction, the case graph is mirrored to provide a better overview.
If the case graph contains unmapped elements, these are displayed transparent
and in a light shade of gray. They are irrelevant for the similarity calculation
and, thus, Req. 4 is also considered. As defined in Req. 5d, mappings can be
set by drawing a line from an element of the query to an element of the case,
whereby only valid mappings are possible. Afterward, a new similarity calcula-
tion is started with this mandatory mapping, whereupon all similarity values
in the visualization change. After such a change, the function for annotating
the similarity values, which are displayed at the edges, is also selected there.
Selecting the edge opens a menu for viewing the local similarity values. There,
the locally used similarity measure can be viewed and replaced by a compatible
measure according to Req. 5b. Besides, information about the elements from the
query and case is included, as well as the local similarity values. By clicking a
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button, a visualization for the local similarity can be opened, where it can be
traced and adjusted according to Req. 3.

4.3 Approach of Merge Graph

The basic idea of the merge graph is to merge two graphs to be compared into
one graph, thereby showing the similarities between them. For the application
in POCBR, similarities between graphs are displayed independent of the height
of their global similarity value. Moreover, mapping between edges must also be
visualized and not only between nodes.
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Fig. 3 shows a mock-up of the adapted merge graph, where Req. 7b is inte-
grated as in the graph mapping and omitted here. The header is identical to that
of the graph mapping approach, except that the entries for displaying specific
mappings and annotating the similarity values are omitted. The query and case
graphs are again based on the longest common path algorithm [13], and both are
color-coded. The merge graph always adopts the layout of the query graph to
ensure comparability with other similarity calculations, according to Req. 4 and
Req. 7b. The nodes in the merge graph contain a gradient of both colors if they
are mapping nodes. Unmapped elements of the query are taken over unchanged,
while unmapped elements of the case are weakly transparent. The mapped nodes
can always be mapped to the nodes of the query in the merge graph. This is not
always the case for edges. If a mapped edge runs between two nodes to which
their corresponding nodes have also been mapped, then this mapping edge is
displayed in the merge graph. However, if this is not the case, the edge is hid-
den from the case and can only be identified by looking at the local similarities.
The representation of similarities is done analogously to the graph mapping ap-
proach, using different thicknesses of the nodes’ frames as well as of the edges.
Selecting an element of the merge graph opens the menu for displaying local
similarities, which is analogous to graph mapping. To set mappings as required
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by Req. 5d, a connection is drawn from an element in the query to an element
in the case graph. With this preset, the other mappings are recalculated and
visualized, whereby the old mapping cannot be marked.

4.4 Approach of Heatmaps

Instead of using heatmaps to visualize similarity distributions in the case base
as in the literature [30, 42], heatmaps are used in this contribution to compare
elements of two different cases. Each entry in the heatmap thereby symbolizes a
mapping of an element of the query to an element of the case. An analogous idea
exists in the original merge graph approach to represent metadata [2]. In addition
to the color representation, where a bright red represents high similarity and a
dark red low similarity, the numerical similarity values are also included in the
tables. The heatmap requires the calculation of the individual similarity values
if they have not already been determined and cached as part of the original
similarity calculation.
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Fig. 4. Overview of the Heatmap Approach.

Fig. 4 shows a mock-up of such an extended merge graph, where Req. 7b
is considered as in the other two approaches and omitted here. Basically, two
heatmaps are shown, one for the nodes and one for the edges. They contain sev-
eral non-selectable fields, since no mapping is allowed at these points. These can
be split as shown in the mock-up into several individual tables for the different
graph element types, omitting the invalid fields by a function provided in the
header. This header is similar to the one in the graph mapping approach, except
that the entries for displaying specific mappings and annotating the similarity
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values are not contained. Selecting a field opens the menu for displaying local
similarities, which is analogous to graph mapping and merge graph. The fields
that represent the current mappings are outlined and thus made recognizable. In
addition to the heatmaps, the query and the case graphs are shown, again using
the longest path algorithm [13]. Both are displayed independently and serve to
clarify the graph elements in the heatmaps. When a field is selected, the elements
in the graphs are marked accordingly. Mappings according to Req. 5d can be set
by selecting other fields. The originally selected mappings are marked by dashed
borders.

5 Experimental Evaluation

The evaluation examines the hypothesis that the designed visualizations of sim-
ilarities enable domain experts and knowledge engineers to acquire a more pro-
found understanding of the similarity model and make targeted adjustments to
it. First, the setup of the evaluation is presented (see Sect. 5.1). It is followed by
a presentation of the results and their discussion (see Sect. 5.2).

5.1 Experimental Setup

The evaluation of the developed approaches was performed based on the pre-
sented requirements (see Sect. 3). A total of ten researchers in POCBR were
recruited, who have been involved in this area for several years, so they are
familiar with the subject, and have built similarity models themselves in the
role of knowledge engineers. They were presented with the requirements and the
three developed approaches, which were shown by mock-ups. With this back-
ground, they rated the three visualization approaches using five-point, ordinal,
and interval-scaled Likert scales [25] and school grades. The participants were
asked to select which approach best met the respective requirements compared
with the other approaches, and to select their overall favorite approach.

5.2 Experimental Results and Discussion

In the individual evaluation for Req. 1 of the explanation of similarity, all three
approaches are rated positively, with graph mapping and heatmaps both scoring
best. To compare the individual evaluations, the Likert items are evaluated in the
interval [0, 4] and the mean value per requirement is calculated. This mean value
based on each requirement is shown in Fig. 5. Overall, the average value indicates
the graph mapping approach as the most suitable, with an absolute score of
3.12. The other two approaches are not rated significantly lower in total, with
heatmap second scoring 2.76 and merge graph third scoring 2.75. The grading of
the approaches also suggests this order when looking at the mean, with merge
graph and heatmap again having a minimal difference. Looking at the median,
confirms graph mapping in first place, with the other two approaches tied.
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Fig. 5. Scored Likert Values for the Visualization Approaches Visualized as Boxplots.

In the selection of the favored approach for each requirement, graph map-
ping clearly dominates. Overall, the graph mapping approach is rated best for
five requirements and tied with others for one requirement. In the other five
requirements, participants could not decide on a favorite. When asked for the
overall best approach, seven experts rated the graph mapping approach best. In
this question, the margin is the clearest, with merge graph second and heatmap
third.

The working hypothesis of this contribution is to achieve better explain-
ability of similarities in POCBR for knowledge engineers by using visualization
techniques. Based on the experts’ assessment of requirements fulfillment, the
evaluation suggests that this goal is achieved for all approaches created. Both,
based on the Req. 1 of explainability and generally recognizable from the require-
ment evaluation, the approach of graph mapping stands out as the best approach
to increase explainability. Based on the evaluation results, the graph mapping
approach has been prototypically implemented in the ProCAKE framework [8]
to be reused by the research community2.

6 Conclusion and Future Work

In this paper, we present novel visualization approaches for complex case repre-
sentations, enabling a better explainability of similarity for knowledge engineers
in POCBR. For this purpose, first, we conduct a literature study and, second,
we build a catalog of requirements for visualization approaches . Based on these
requirements, the merge graph approach [2] and a heatmap approach are fur-
ther investigated as they promise good support for developers. However, the
approaches need to be tailored and extended for the application in POCBR. In
2 The implementation is available at https://git.opendfki.de/easy/

explanation-of-similarities-in-pocbr-by-visualization

https://git.opendfki.de/easy/explanation-of-similarities-in-pocbr-by-visualization
https://git.opendfki.de/easy/explanation-of-similarities-in-pocbr-by-visualization
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addition, a new visualization approach based on graph mapping is introduced.
Thus, three visualizations are provided to increase the explanation in POCBR.
To verify their successful conceptualization, the evaluation is conducted, explic-
itly addressing explanation. The explanation capabilities of all approaches are
rated high, with graph mapping receiving the best scores and being the preferred
approach of the experts. Overall, the evaluation suggests a contribution to ex-
planation for all approaches based on the requirements. Thus, the evaluation
indicates that the proposed visualizations are suitable for supporting CBR de-
velopers in their task and to increase the explanation of similarities in POCBR.

In future work, further case representations should be investigated for using
visualizations to support CBR developers in their work. As recent literature
shows [3, 28], only rather simple case representations are currently investigated
and many case representations have not even been considered, such as textual
cases. Visualizations can also be created for other case representations, such as
the simple ones, which have not been covered in the literature so far, or more
complex structures. On a global level, an extension to represent dependencies
between processes [22] or an adaptation for usage with other similarity measures
are conceivable. Another research possibility is the application to other domains,
such as argument graphs [6], in which a similarity visualization can be used to
explain argumentation processes [24]. To support the knowledge engineer in the
pre-definitions of mappings as stated in the requirements , a procedure must also
be designed to search for a configuration of the similarity model that actually
achieves the specified mapping during the similarity calculation. Currently, this
is only possible by a manual configuration. For this purpose, methods from the
field of intelligent search [17] can be applied, for example. In this work, we focus
on supporting CBR system developers for their work. In future work, we want
to examine what changes need to be performed on the visualization approaches
to support end users. In this context, other aspects of the similarity calculation
are probably more important, e. g., the differences between multiple query-case
pairs and their similarities.
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Affairs and Climate Action under grant No. 01MD22002C EASY.

References

1. Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodologi-
cal Variations, and System Approaches. AI Commun. 7(1), 39–59 (1994)

2. Andrews, K., Wohlfahrt, M., Wurzinger, G.: Visual Graph Comparison. In: 13th
IV. pp. 62–67. IEEE (2009)

3. Bach, K., Mork, P.J.: On the Explanation of Similarity for Developing and De-
ploying CBR Systems. In: 33rd FLAIRS. pp. 413–416. AAAI Press (2020)

4. Batyrshin, I.Z., Kubysheva, N., Solovyev, V., Villa-Vargas, L.A.: Visualization of
Similarity Measures for Binary Data and 2x2 Tables. CyS 20(3), 345–353 (2016)

5. Bergmann, R.: Experience Management: Foundations, Development Methodology,
and Internet-Based Applications, LNCS, vol. 2432. Springer (2003)



Explanation of Similarities in POCBR by Visualization 15

6. Bergmann, R., Biertz, M., Dumani, L., Lenz, M., Ludwig, A., Neumann, P.J.,
Ollinger, S., Sahitaj, P., Schenkel, R., Witry, A.: The ReCAP Project. Datenbank-
Spektrum 20(2), 93–98 (2020)

7. Bergmann, R., Gil, Y.: Similarity Assessment and Efficient Retrieval of Semantic
Workflows. Inf. Syst. 40, 115–127 (2014)

8. Bergmann, R., Grumbach, L., Malburg, L., Zeyen, C.: ProCAKE: A Process-
Oriented Case-Based Reasoning Framework. In: 27th ICCBR Workshop Proc.
(2019)

9. Bunke, H., Messmer, B.T.: Similarity Measures for Structured Representations. In:
Topics in Case-Based Reasoning: 1st European Workshop. pp. 106–118. Springer
(1994)

10. Burkhard, H., Richter, M.M.: On the Notion of Similarity in Case Based Reasoning
and Fuzzy Theory. In: Soft Computing in CBR, pp. 29–45. Springer (2001)

11. Card, S.K., Mackinlay, J.D., Shneiderman, B.: Readings in Information Visualiza-
tion: Using Vision to Think. Academic Press (1999)

12. Das, A., Rad, P.: Opportunities and Challenges in Explainable Artificial Intelli-
gence (XAI): A Survey. CRR 2006.11371 (2020)

13. Eades, P., Xuemin, L.: How to Draw a Directed Graph. In: IEEE Workshop on
Visual Languages. pp. 13–14. IEEE Lett. Comput. Soc. (1989)

14. Epskamp, S., Cramer, A.O., Waldorp, L.J., Schmittmann, V.D., Borsboom, D.:
qgraph: Network Visualizations of Relationships in Psychometric Data. J. Stat.
Softw. 48, 1–18 (2012)

15. Gates, L., Kisby, C., Leake, D.: CBR Confidence as a Basis for Confidence in Black
Box Systems. In: 27th ICCBR. LNCS, vol. 11680, pp. 95–109. Springer (2019)

16. Hall, M., Harborne, D., Tomsett, R., Galetic, V., Quintana-Amate, S., Nottle, A.,
Preece, A.: A Systematic Method to Understand Requirements for Explainable AI
(XAI) Systems. In: 28th IJCAI Workshop Proc. vol. 11 (2019)

17. Hart, P.E., Nilsson, N.J., Raphael, B.: A Formal Basis for the Heuristic Determi-
nation of Minimum Cost Paths. IEEE Trans. Syst. Sci. and Cybern. 4(2), 100–107
(1968)

18. Hoffmann, M., Bergmann, R.: Informed Machine Learning for Improved Similarity
Assessment in Process-Oriented Case-Based Reasoning. CoRR abs/2106.15931
(2021)

19. Ivanov, S., Kalenkova, A.A., van der Aalst, W.M.P.: BPMNDiffViz: A tool for
BPMN Models Comparison. In: 13th BPM. CEUR Workshop Proc., vol. 1418, pp.
35–39. CEUR-WS.org (2015)

20. Kendall-Morwick, J., Leake, D.: A Study of Two-Phase Retrieval for Process-
Oriented Case-Based Reasoning. In: Succ. CBR Appl.-2, pp. 7–27. Springer (2014)

21. Kenny, E.M., Keane, M.T.: Twin-Systems to Explain Artificial Neural Networks
Using Case-Based Reasoning: Comparative Tests of Feature-Weighting Methods
in ANN-CBR Twins for XAI. In: 28th IJCAI. pp. 2708–2715 (2019)

22. Kumar, R., Schultheis, A., Malburg, L., Hoffmann, M., Bergmann, R.: Considering
Inter-Case Dependencies During Similarity-Based Retrieval in Process-Oriented
Case-Based Reasoning. In: 35th FLAIRS. FloridaOJ (2022)

23. Lamy, J.B., Sekar, B., Guezennec, G., Bouaud, J., Séroussi, B.: Explainable Ar-
tificial Intelligence for Breast Cancer: A Visual Case-Based Reasoning Approach.
Artif. Intell. Med. 94, 42–53 (2019)

24. Lenz, M., Sahitaj, P., Kallenberg, S., Coors, C., Dumani, L., Schenkel, R.,
Bergmann, R.: Towards an Argument Mining Pipeline Transforming Texts to Ar-
gument Graphs. In: 8th COMMA. FAIA, vol. 326, pp. 263–270. IOS Press (2020)



16 A. Schultheis et al.

25. Likert, R.: A Technique for the Measurement of Attitudes. Arch. Psychol. (1932)
26. Manovich, L.: What is Visualization. paj: The Journal of the Initiative for Digital

Humanities, Media, and Culture 2(1) (2010)
27. Marín-Veites, P., Bach, K.: Explaining CBR Systems Through Retrieval and Sim-

ilarity Measure Visualizations: A Case Study. In: 30th ICCBR. LNCS, vol. 13405,
pp. 111–124. Springer (2022)

28. Massie, S., Craw, S., Wiratunga, N.: Visualisation of Case-Base Reasoning for
Explanation. In: 7th ECCBR Proc. pp. 135–144 (2004)

29. Mathisen, B.M., Aamodt, A., Bach, K., Langseth, H.: Learning Similarity Measures
from Data. Prog. Artif. Intell. 9(2), 129–143 (2020)

30. McArdle, G., Wilson, D.C.: Visualising Case-Base Usage. In: 5th ICCBR Workshop
Proc. pp. 105–114 (2003)

31. Minor, M., Montani, S., Recio-García, J.A.: Process-Oriented Case-Based Reaso-
ning. Inf. Syst. 40, 103–105 (2014)

32. Namee, B.M., Delany, S.J.: CBTV: Visualising Case Bases for Similarity Measure
Design and Selection. In: 18th ICCBR. LNCS, vol. 6176, pp. 213–227. Springer
(2010)

33. Nugent, C., Cunningham, P.: A Case-Based Explanation System for Black-Box
Systems. Artif. Intell. Rev. 24(2), 163–178 (2005)

34. Ontañón, S.: An Overview of Distance and Similarity Functions for Structured
Data. Artif. Intell. Rev. 53(7), 5309–5351 (2020)

35. Rabiee, F.: Focus-Group Interview and Data Analysis. PNS 63(4), 655–660 (2004)
36. Recio-García, J.A., Parejas-Llanovarced, H., Orozco-del-Castillo, M.G., Brito-

Borges, E.E.: A Case-Based Approach for the Selection of Explanation Algorithms
in Image Classification. In: 29th ICCBR. LNCS, vol. 12877, pp. 186–200. Springer
(2021)

37. Richter, M.M.: Knowledge Containers. In: Readings in CBR. MKP (2003)
38. Rostami, M.A., Saeedi, A., Peukert, E., Rahm, E.: Interactive Visualization of

Large Similarity Graphs and Entity Resolution Clusters. In: 21th EDBT. pp. 690–
693. OpenProceedings.org (2018)

39. Schoenborn, J.M., Weber, R.O., Aha, D.W., Cassens, J., Althoff, K.D.: Explainable
Case-Based Reasoning: A Survey. In: AAAI-21 Workshop Proceedings (2021)

40. Shneiderman, B.: The Eyes Have It: A Task by Data Type Taxonomy for Infor-
mation Visualizations. In: Proc. of IEEE Symposium on Visual Languages, pp.
336–343. IEEE Computer Society (1996)

41. Sørmo, F., Cassens, J., Aamodt, A.: Explanation in Case-Based Reasoning-
Perspectives and Goals. Artif. Intell. Rev. 24(2), 109–143 (2005)

42. Wilkinson, L., Friendly, M.: The History of the Cluster Heat Map. Am. Stat. 63(2),
179–184 (2009)

43. Xuu, A.B.: Structure Mapping in the Comparison Process. AJP 113(4), 501–538
(2000)

44. Zeyen, C., Bergmann, R.: A*-Based Similarity Assessment of Semantic Graphs.
In: 28th ICCBR. LNCS, vol. 12311, pp. 17–32. Springer (2020)


	Explanation of Similarities in Process-Oriented Case-Based Reasoning by Visualization

