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Abstract. Knowledge Graph Reasoning (KGR) is one effective method
to improve incompleteness and sparsity problems, which infers new knowl-
edge based on existing knowledge. Although the probabilistic case-based
reasoning (CBR) model can predict attributes for an entity and outper-
form other rule-based and embedding-based methods by gathering rea-
soning paths from similar entities in KG, it still suffers from some prob-
lems such as insufficient graph feature acquisition and omission of contex-
tual relation information. This paper proposes a contextual information-
augmented probabilistic CBR model for KGR, namely CICBR. The pro-
posed model frame the reasoning task as the query answering and eval-
uates the likelihood that a path is valuable at answering a query about
the given entity and relation by designing a joint contextual information-
obtaining algorithm with entity and relation features. What’s more, to
obtain a more fine-grained representation of entity features and relation
features, the CICBR introduces Graph Transformer for KG’s representa-
tion and learning. Extensive experimental results on various benchmarks
prominently demonstrate that the proposed CICBR model can obtain
the state-of-the-art results of current CBR-based methods.

Keywords: Knowledge Graph Reasoning, Case-based Reasoning, Graph
Neural Network, Graph Transformer, Query Answering

1 Introduction

A Knowledge Graph (KG) is essentially a semantic network that reveals the
relations between entities. Existing KGs such as NELL [1], Freebase [2], and
WordNet [3] have been widely used for Knowledge-Based Question Answering [4],
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Recommendation System [5], Anomaly Detection [6], etc. However, the KG is
usually incomplete and sparse, which still suffers from some limitations in the
above applications.

Knowledge Graph Reasoning (KGR) is one of the main methods to improve
those problems by inferring new knowledge based on the existing knowledge
in the KG. Recent studies on KGR have shown that case-based reasoning ap-
proaches [7–10] solve a new problem by retrieving “cases” that are similar to the
given problem, which can achieve advanced results more than rule-based and
embedding-based reasoning models. Although the approach proposed in liter-
ature [10] can outperform state-of-the-art (SOTA) methods and nearly match
the best offline method, there are still two kinds of problems that influence its
performance. Firstly, the learning of graph features is inadequate, which makes
the model insensitive to finer-grained differences between entities and relations.
Secondly, the effects of relations between entities are ignored when obtaining
and inferring paths, which leads to a lack of effective reasoning paths and may
affect the accuracy of prediction.

In this paper, we present a KGR model based on the contextual information-
augmented probabilistic CBR algorithm, referred to as CICBR. Our approach
first introduces Graph Transformer [11] architecture, which is a generalization
of transformer neural network architecture for arbitrary graphs, to obtain more
finer-grained entity and relation characteristics to reasoning, and then joint finds
similar entities and relations through feature representations and generate con-
textual information to augment the probabilistic case-based reasoning model.
The main contributions of this paper are as follows:

– We utilize the Graph Transformer architecture for learning and acquiring
more detailed entity and relation feature representations. To the best of
our current knowledge, this is the first approach that introduces the Graph
Transformer architecture into the field of CBR-based KGR.

– We present a joint contextual information-obtaining algorithm with entity
and relation features, namely JER-CIO. Compared to the previous contex-
tual information acquiring algorithm, JER-CIO is the first method that con-
siders the contextual relations between entities, which can obtain more ef-
fective inference paths by combining with contextual entity extraction to
enhance inference performance.

– We conduct extensive experiments on three benchmark datasets and the
results demonstrate that the proposed KGR model CICBR can effectively
outperform existing CBR-based models and obtain optimal experimental
results.

2 Related Work

In this section, we mainly state KG’s incompleteness and sparsity [12] and briefly
summarize the solution to these problems based on KGR technology. As shown
in Fig. 1, we give the ubiquitous manifestations of incompleteness and sparsity



CICBR 3

in KG: (i) incompleteness of entities and relationships: entity incompleteness is
represented by missing knowledge about people related to “Lionel Messi” and
others; relationship incompleteness is instantiated in the absence of the “father
& son” relationship of “Lionel Messi” and “Ciro Messi”. (ii) Sparsity of entities
and relations: it can be intuitionistically found from Fig. 1 that the ratio of
entities’ kind (7) and relations’ kind (3) to the number of facts (13) is relatively
small.

Fig. 1. An example of KG. The solid black line is existing relations, and the dashed
red line is relations obtained by KGR.

KGR is one of the main methods to improve the above problems and recent
studies have shown that CBR-based methods can obtain the most advanced rea-
soning results than rule-based and embedding-based models. In detail, the solu-
tions in these methods [9, 10] first regard the reasoning task as a query answering,
i.e. answering questions of the form (“Antonella Rocuzzo”, “husband”, ?). Then
retrieve k similar entities (cases) to the query entity and find multiple KG paths,
which are the solution to retrieved cases, to the entity they are connected by the
query relation.

Although the advanced CBR-based KGR approach proposed in the litera-
ture [10] can gather reasoning paths from entities that are similar to the query
entity and estimate parameters of the model efficiently using simple count statis-
tics, there are still two problems. Firstly, the lack of learning ability of entity
features and relation features in knowledge graphs leads to the insufficient per-
ception of fine-grained differences between entities and relations when calculating
the similarity of contextual information. Secondly, only entities that are similar
to the query entity are considered when obtaining the contextual information,
while the contextual information of the relations that are similar to the query
relation is ignored, resulting in the loss of a large number of useful paths affect-
ing the prediction results. This paper focuses on those problems and proposes a
contextual information-augmented probabilistic CBR model CICBR that jointly
obtains contextual entities and relations information from KG’s entities and re-
lations feature representations, which are learned and generated from Graph
Transformer architecture.
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3 Methodology

In this section, we first introduce the preliminaries used in this paper, and then
establish our proposed model in detail.

3.1 Preliminaries

In order to facilitate the understanding of the subsequent formulae, the general
definition of KG is defined as follows:

Definition 1 (Knowledge Graph). A Knowledge Graph G = (V,E,R),
where V represents the set of entities, R represents the set of binary relations,
E ⊆ V × R × V represents the edges of the KG, and a KG is a collection
of facts stored as triplets (e1, r, e2) where e1, e2 ∈ V, r ∈ R. Also, following
previous approaches[?], we add the inverse relation of every fact, i.e., for a fact
(e1, r, e2) ∈ E, we add the fact (e2, r

−1, e1) to the KG. (If the set of binary
relations R does not contain the inverse relation r−1, it is added to R as well.)

This paper frames the reasoning as a query answering task on KG, i.e., an-
swering questions of the form (e1q, rq, ?), where the answer is an entity in the
KG. Its definition is as follows:

Definition 2 (Query Answering Task). Given an input query of the form
(e1q, rq, ?), starting from vertex corresponding to e1q in G, the query answering
model follows a path in the graph stopping at a node that it predicts as the
answer.

The paths used in the query answering task in the KG are defined as fol-
lows [10]:

Definition 3 (KG Paths). A path p = (e1, r1, e2, r2, ..., rn, en+1) with st(p)
= e1, en(p) = en+1, len(p) = n, and type(p) = (r1, r2, ..., rn) in a KG between
two entities e1 and en+1 is defined as a sequence of alternating entities and
relations that connect them. Let P represents the set of all paths in G and
Pn ⊆ P = {p | len(p) ≤ n} be the set of all paths of length up to n. Let
Pn = {type(p) | p ∈ Pn} denotes the set of all path types with length up to n
and Pn(e1, r) ⊆ Pn represents all path types of length up to n that originate at
e1 by a direct edge of type r, i.e., if Se1r = {e2 | (e1, r, e2) ∈ G} is the set of
entities that are connected to e1 via a direct edge r, then Pn(e1, r) denotes the
set of all path types of length up to n that start from e1 and end at entities in
Se1r. Also, Pn(e1, r) is defined to represent paths instead of path types.

3.2 The proposed Model ICCBR

In this section, we first present the overall architecture of the model, and then
elaborate on the architecture in the next two subsections.

Overview
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To improve the problems mentioned above, we propose the CICBR model to
approach KGR. As shown in Fig. 2, the proposed CICBR architecture can be
equipped with two stages: (a) joint contextual entities and relations information
obtaining and (b) augmented probabilistic cased-based reasoning. Specifically,
given an input KG and a query, CICBR’s first stage, which will be presented in
the next subsection, is to learn the graph feature representations from the Graph
Transformer architecture and then utilize them to jointly acquire contextual
entities and relations information by finding the entities and relations that are
similar to the query entity and relation respectively. Next, CICBR’s second stage,
which will be described in the next subsection, aims to generate reasoning paths
from contextual information, compute the score of each answer candidate and
weigh paths with an estimate of their frequency and precision.

Fig. 2. Overview of the Proposed CICBR model.

Joint Contextual Entities and Relations Information Obtaining

In the previous CBR-based KGR model [10], each entity is represented as a
sparse vector of its outgoing edge types, which is an extremely simple way of
representing entities. However, this setting leads to a lack of ability to perceive
entity characteristics and to gain fine-grained differences between entities, espe-
cially when clustering the entity and acquiring contextual entities information.
To improve this problem, we present to utilize the Graph Transformer archi-
tecture [11] into the CBR field for better utilization of rich feature information
available in the knowledge graph in the form of entity and relation attributes.
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In addition, the previous work only considered the contextual entity infor-
mation in the knowledge graph and ignored the importance of the relationship
between entities, i.e. the contextual relations information, which may lead to
the loss of a large number of valid inference paths and the failure to obtain
the correct answer. To improve this problem, we propose a joint contextual
information-obtaining algorithm named JER-CIO, which can effectively obtain
the contextual entities and contextual relations information, and contribute to
the generation of candidate paths in the next stage.

Specifically, following previous approaches [11], we pre-compute the Lapla-
cian eigenvectors of knowledge graphs, which are defined as follows:

∆ = I −D− 1
2AD− 1

2 = UTΛU (1)

where A is a n×n adjacency matrix, D is a degree matrix, and Λ, U correspond
to the eigenvalues and eigenvectors respectively.

After pre-computing the Laplacian eigenvectors of KGs, we prepare the input
entity and relation embeddings passed to the Graph Transformer. For a Graph
G with entity features αi ∈ Rdn×1 for each entity i and relation features βij ∈
Rde×1 for each relation between entities i and j, the input entity features αi and
relation features βij are passed through a linear projection to embed those to
d-dimensional hidden features h0

i and e0ij .

ĥ0
i = A0αi + a0

e0ij = B0βij + b0
(2)

where A0 ∈ Rd×k, B0 ∈ Rd×de and a0, b0 ∈ Rd are the parameters of the linear
projection layers. Then, we embed the pre-computed entity positional encoding
of dim k via a linear projection and add to the entity features ĥ0

i .

λ0
i = C0λi + c0

h0
i = ĥ0

i + λ0
i

(3)

where C0 ∈ Rd×k and c0 ∈ Rd.
Then, as shown in Fig. 3, we define the layer update equations for a layer ℓ

as follows:

ĥℓ+1
i = Oℓ

h

H

∥
k=1

(
∑
j∈Ni

wk,ℓ
ij V k,ℓhℓ

j) (4)

êℓ+1
ij = Oℓ

e

H

∥
k=1

(ŵk,ℓ
ij ) (5)

wk,ℓ
ij = Softmaxj(ŵ

k,ℓ
ij ) (6)

ŵk,ℓ
ij = (

Qk,ℓhℓ
i ·Kk,ℓhℓ

j√
dk

) · Ek,ℓeℓij (7)
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where Qk,ℓ, Kk,ℓ, V k,ℓ, Ek,ℓ ∈ Rdk×d, Oℓ
h, O

ℓ
e ∈ Rd×d, k = 1 to H represents

the number of attention heads, and ∥ denotes a concatenation operation.

The attention outputs ĥℓ+1
i and êℓ+1

ij are then passed to separate Feed For-
ward Network (FFN) preceded and succeeded by residual connections and nor-
malization layers as follows:

Fig. 3. Overview of the Graph Transformer architecture.

ˆ̂
h
ℓ+1

i = Norm(hℓ
i + ĥℓ+1

i ) (8)

ˆ̂
ĥ
ℓ+1

i = W ℓ
h,2ReLU(W ℓ

h,1
ˆ̂
h
ℓ+1

i ) (9)

hℓ+1
i = Norm(

ˆ̂
h
ℓ+1

i +
ˆ̂
ĥ
ℓ+1

i ) (10)

ˆ̂e
ℓ+1

ij = Norm(eℓi,j + êℓ+1
ij ) (11)

ˆ̂
ê
ℓ+1

ij = W ℓ
e,2ReLU(W ℓ

e,1
ˆ̂e
ℓ+1

ij ) (12)
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eℓ+1
ij = Norm(ˆ̂e

ℓ+1

ij +
ˆ̂
ê
ℓ+1

ij ) (13)

where W ℓ
h,1 ∈ R2d×d, W ℓ

h,2 ∈ Rd×2d,
ˆ̂
h
ℓ+1

i ,
ˆ̂
ĥ
ℓ+1

i , W ℓ
e,1 ∈ R2d×d, W ℓ

e,2 ∈ Rd×2d,

ˆ̂e
ℓ+1

ij ,
ˆ̂
ê
ℓ+1

ij represent intermediate representations.

After obtaining entity and relation features representation, we first find sim-
ilar entities to the query entity that has at least a relation rq, i.e., for a query
(“Lionel Messi”, “works for country”, ?), if there is (“Emiliano Mart́ınez”,
“works for country”, “Argentina”), the “Emiliano Mart́ınez” may be consid-
ered and those entities are regarded as ’contextual entities’.

Different from previous approaches, then we added additional ’contextual
relations’ to get more useful reasoning paths by finding similar relations linked
to the query entity e1q , i.e., we would consider “lives in country” if we obverse
(“Lionel Messi”, “lives in country”, “Argentina”). Therefore, we let Ece,q and
Ecr,q denote the set of contextual entities and contextual relations for the query
q respectively.

To compute Ece,q and Ecr,q, we propose a joint contextual information-
obtaining algorithm with entity and relation features namely JER-CIO, which
is shown in Algorithm. 1. Lines 3-18 are to acquire the input knowledge graph
representation with entity features and relation features for contextual informa-
tion obtaining in the next step. Lines 19-26 sort entities with respect to their
cosine distance with respect to query entity and select the K1 entities with the
least distance and which have the query relation rq. For each contextual entity
ec, we gather the path types that connect ec to the entities it is connected by
the relation rq. Lines 27-34 sort relations with respect to their cosine distance
with respect to query relation and select the K2 relations with the least distance
and which connect the query entity e1q . For each contextual relation rc, we ag-
gregate the path types starting from e1q and containing similarity relation rc.
These extracted path will be used to reason about the query entity.

Augmented Probabilistic Case-based Reasoning

After jointly obtaining the contextual entities and relations, we give the repre-
sentation of the entity retrieved according to the context information as follows:

Pn(Ece,q, rq) =
⋃

ec∈Ece,q

Pn(ec, rq) (14)

Pn(e1q , Ecr,q) =
⋃

rc∈Ecr,q

Pn(e1q , rc) (15)

Then, the probability of finding the answer entity e2 given the query is given
by:
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Algorithm 1 Joint contextual information-obtaining algorithm with entity and
relation features (JER-CIO)

Input: Knowledge Graph G = (V,E,R) with entity features αi for each entity i,
positional encoding λi for each entity i, and relation features βij for each relation
between entities i and j, query q with entity feature he1q

and relation feature
erq , and hyper-parameters K1 and K2.
Output: A set of contextual entities Ece,q of query q and a set of contextual
relations Ecr,q of query q.

1: Ece,q ← []
2: Ecr,q ← []
3: % Graph feature acquiring
4: for i in V do
5: h0

i ← A0αi + C0λi + a0 + c0

6: for j.isNeighbor(i) do
7: e0ij ← B0βij + b0

8: end for
9: for ℓ in L do

10: ĥℓ+1
i ← Oℓ

h

H

∥
k=1

(
∑

j∈Ni
Softmaxj((

Qk,ℓhℓ
i ·K

k,ℓhℓ
j√

dk
) · Ek,ℓeℓij)V

k,ℓhℓ
j)

11: êℓ+1
ij ← Oℓ

e

H

∥
k=1

((
Qk,ℓhℓ

i ·K
k,ℓhℓ

j√
dk

) · Ek,ℓeℓij)

12: hℓ+1
i ← Norm(Norm(hℓ

i + ĥℓ+1
i ) +W ℓ

h,2ReLU(W ℓ
h,1

ˆ̂
h
ℓ+1

i ))

13: eℓ+1
ij ← Norm(Norm(eℓi,j + êℓ+1

ij ) +W ℓ
e,2ReLU(W ℓ

e,1
ˆ̂e
ℓ+1

ij ))
14: end for
15: if i.equal(e1q ) then
16: he1q

← hL
i

17: end if
18: end for
19: % Contextual entities obtaining
20: similaritye ← []
21: for i in V do

22: similaritye.add(
hL
i ·he1q

|hL
i ||he1q

| )

23: end for
24: for k in K1 do
25: Ece,q.add(reverseSort(similaritye)[k])
26: end for
27: % Contextual relations obtaining
28: similarityr ← []
29: for r in R do

30: similarityr.add(
eLr ·erq

|eLr ||erq |
)

31: end for
32: for k in K2 do
33: Ecr,q.add(reverseSort(similarityr)[k])
34: end for
35: return Ece,q, Ecr,q
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P (e2 | e1q, rq) =
∑

p∈Pn(Ece,q,rq)∪Pn(e1q ,Ecr,q)

P (e2, p | e1q, rq)

=
∑
p

P (p | e1q, rq)P (e2 | p, e1q, rq)
(16)

Next, we marginalize the random variable representing the path types ob-
tained from Ece,q and Ecr,q. P (p | e1q, rq) denotes the probability of finding
a path type given the query, which captures how frequently each path type
co-occurs with a query and represents the prior probability for a path type.
P (e2 | p, e1q, rq) captures the proportion of times, when a path type p is tra-
versed starting from the query entity, we reach the correct answer instead of some
other entity, which can be understood as capturing the likelihood of reaching the
right answer or the “precision” of a reasoning path type.

Follow the settings in the previous approaches, we let c be a random variable
representing the cluster assignment of the query entity. Then for the path-prior
term, we have

P (p | e1q, rq) =
∑
c

P (c | e1q, rq)P (p | c, e1q, rq) (17)

where P (c | e1q, rq) is zero for all clusters except the cluster in which the query
entity belongs to. And if ce1q is the cluster in which the e1q has been assigned,
then P (p | ce1q, e1q, rq) = P (p | ce1q, rq). Instead of per-entity parameters, we
now aggregate statistics over entities in the same cluster and have per-cluster
parameters. To perform clustering, we use hierarchical agglomerative cluster-
ing with average linkage mentioned in the literature [10] with the entity-entity
similarity defined in Section 3.2.2.

Then, we estimate parameters by simple count statistics from the KG. i.e.,
the path prior P (p | c, rq) is estimated as follows:∑

ec∈c

∑
p′∈Pn(ec,rq)∪Pn(e1q ,rc)

1[type(p′) = p]∑
ec∈c

∑
p′∈Pn(ec,rq)∪Pn(e1q ,rc)

1
(18)

For each entity in cluster c, we consider the paths that connect ec to entities
it is directly connected to via edge type rq and its contextual relations Ecr .
The path prior for a path type p is calculated as the proportion of times the
type of paths in Pn(ec, rq) is equal to p. Note that in Eq.18, if a path type
occurs multiple times, all instances are counted. Similarly, the path-precision
probability (P (e2 | p, c, rq)) can be estimated as follows:∑

ec∈c

∑
p′∈Pn(ec)

1[type(p′) = p] · 1[en(p′) ∈ Secrq ]∑
ec∈c

∑
p′∈Pn(ec)

1[type(p′) = p]
(19)

where Pn(ec) represents the paths of up to length n starting from the entity
ec, en(p) represents the end entity for a path p and Secrq represents the set of
entities that are connected to ec through a direct relation of type rq. Then, given
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rq, the Eq.19 estimates the proportion of times the path p successfully ends at
one of the answer entities when starting from ec.

In general, given a query (e1q, rq), our proposed CBR-based KGR model CI-
CBR first learns the representations of entities and relations features through
Graph Transformer architecture and then proposes a joint contextual informa-
tion obtaining algorithm to gather reasoning paths from K1 similar entities to
e1q and K2 similar relations to rq and then traverse those generated reasoning
paths in the KG starting from e1q, which can obtain a set of candidate an-
swer entities. Then, the score of each answer entity candidate is computed as a
weighted sum of the reasoning paths, which is weighed with an estimate of its
frequency and precision given the query relation.

4 Experiments and Results

In this section, we conduct extensive comparison experiments to verify the per-
formance of the proposed CICBR model.

4.1 Experimental Datasets

To sufficiently verify the effectiveness of the proposed CBR-based KGR model
CICBR, we use three different knowledge graph reasoning standard datasets:
NELL-995 [13], FB122 [14], and WN18RR [15] in the experiment, which as
shown in Table 1. Among them, NELL-995 is a subset of the NELL derived
from the 995th iteration of the system. FB122 is a subset of the dataset derived
from Freebase, FB15K, which contains 122 relations regarding people, locations,
and sports. WN18RR is created from WN18 by removing inverse relation test-
leakage.

Table 1. Overview of the experimental datasets.

Dataset #Ent #Rel #Train #Valid #Test-I #Test-II #Test-ALL
NELL-995 75,492 200 149,678 543 - - 3,992
FB122 9,738 122 91,638 9,595 5,057 6,186 11,243

WN18RR 40,943 11 86,835 3,034 - - 3,134

4.2 Baselines and Evaluation Metrics

The experiment represents the rule-based, embedding-based, and case-based rea-
soning methods as baselines comparing our proposed model CICBR to prove
the model’s validity thoroughly. The rule-based baselines include KALE [14],
ASR [16], and KGLR [17]. The embedding-based baselines contain TransE [18],
DistMult [19], ComplEx [20], ConvE [15], RotatE [21], GNTP [22], and MIN-
ERVA [23]. The CBR-based baselines consist of CBR [9] and PCBR [10]. Nota-
bility, because the research of combining CBR into the field of KGR is still in
the development stage, there are few baselines for comparison.
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In the link prediction task, two kinds of standard metrics were used to evalu-
ate the experimental performance, including Mean Reciprocal Ranking (MRR)
and Hits@K. For each metric, a higher score indicates a better effect. The MRR
is calculated as follows:

MRR =
1

|N |

|N |∑
i=1

1

ranki
=

1

|N |
(

1

rank1
+

1

rank2
+ ...+

1

rank|N |
) (20)

N is the set of triples and ranki is the link prediction ranking (which is a triple
ranks by its score in the overall link prediction task results) of the i-th triple.

In addition, Hits@K(K = 1, 3, 5, 10) is described as follows:

Hits@K =
1

|N |

|N |∑
i=1

I(ranki ≤ K) (21)

where I(·) is an indicator function that the value sets to 1 if the condition is
true, otherwise it sets to 0.

4.3 Results and Analysis

The link prediction overall results for the three standard datasets are shown in
Table 2, Table 3, and Table 4, where ”†” indicates the results taken from litera-
ture [10]. It can be seen that the proposed CICBR model is explicitly improved
compared with CBR-based KGR approaches that the CICBR model can improve
the {Hits@3, Hits@5, Hits@10, MRR} average prediction accuracy compared
with CBR-based baselines by {17.604%, 14.989%, 12.866%, 20.392%} under the
FB122 dataset and improve the {Hits@1, Hits@3, Hits@10, MRR} average pre-
diction accuracy compared with CBR-based baselines under the NELL-995 and
WN18RR datasets by {9.091%, 4.777%, 1.149%, 7.664%} and {14.015%, 5.368%,
11.480%, 12.427%} respectively.

Table 2. Overall results of link prediction task on FB122 datasets (Part 1).

Test-I Test-II
Hits@K Hits@K

Models 3 5 10 MRR 3 5 10 MRR

KALE-Pre (Guo et al., 2016)† 0.358 0.419 0.498 0.291 0.829 0.861 0.899 0.713

KALE-Joint (Guo et al., 2016)† 0.384 0.447 0.522 0.325 0.797 0.841 0.896 0.684

ASR-DistMult (Minervini et al., 2017)† 0.363 0.403 0.449 0.330 0.980 0.990 0.992 0.948

ASR-ComplEx (Minervini et al., 2017)† 0.373 0.410 0.459 0.338 0.992 0.993 0.994 0.984

TransE (Bordes et al., 2013)† 0.360 0.415 0.481 0.296 0.775 0.828 0.884 0.630

DistMult (Yang et al., 2015)† 0.360 0.403 0.453 0.313 0.923 0.938 0.947 0.874

ComplEx (Trouillon et al., 2016)† 0.370 0.413 0.462 0.329 0.914 0.919 0.924 0.887

RotatE (Sun et al., 2019)† 0.511 0.551 0.603 0.471 0.868 0.886 0.907 0.846

GNTPs (Minervini et al., 2020)† 0.337 0.369 0.412 0.313 0.982 0.990 0.993 0.977

CBR (Das et al., 2020)† 0.400 0.445 0.488 0.359 0.678 0.718 0.759 0.636

PCBR (Das et al., 2020)† 0.490 0.527 0.571 0.457 0.948 0.950 0.953 0.948
CICBR (Ours) 0.508 0.543 0.592 0.465 0.959 0.971 0.975 0.956



CICBR 13

Table 3. Overall results of link prediction task on FB122 datasets (Part 2).

Test-ALL
Hits@K

Models 3 5 10 MRR

KALE-Pre (Guo et al., 2016)† 0.617 0.662 0.718 0.523

KALE-Joint (Guo et al., 2016)† 0.612 0.664 0.728 0.523

ASR-DistMult (Minervini et al., 2017)† 0.707 0.731 0.752 0.675

ASR-ComplEx (Minervini et al., 2017)† 0.717 0.736 0.757 0.698

KGLR (Garcia-Duran and Niepert, 2017)† 0.740 0.770 0.797 0.702

TransE (Bordes et al., 2013)† 0.589 0.642 0.702 0.480

DistMult (Yang et al., 2015)† 0.674 0.702 0.729 0.628

ComplEx (Trouillon et al., 2016)† 0.673 0.695 0.719 0.641

RotatE (Sun et al., 2019)† 0.708 0.736 0.770 0.678

GNTPs (Minervini et al., 2020)† 0.692 0.711 0.732 0.678

CBR (Das et al., 2020)† 0.570 0.612 0.653 0.527

PCBR (Das et al., 2020)† 0.742 0.760 0.782 0.727
CICBR (Ours) 0.749 0.771 0.788 0.733

Table 4. Overall results of link prediction task on NELL-995 and WN18RR datasets.

NELL-995 WN18RR
Hits@K Hits@K

Models 1 3 10 MRR 1 3 10 MRR

TransE (Bordes et al., 2013)† 0.53 0.79 0.87 0.67 - - 0.50 0.23

DistMult (Yang et al., 2015)† 0.61 0.73 0.79 0.68 0.39 0.44 0.49 0.43

ComplEx (Trouillon et al., 2016)† 0.61 0.76 0.83 0.69 0.41 0.46 0.51 0.44

ConvE (Dettmers et al., 2018)† 0.67 0.81 0.86 0.75 0.40 0.44 0.52 0.43

RotatE (Sun et al., 2019)† 0.65 0.82 0.87 0.74 0.43 0.49 0.57 0.48

GNTP (Minervini et al., 2020)† - - - - 0.41 0.44 0.48 0.43

MINERVA (Das et al., 2017)† 0.66 0.77 0.83 0.72 0.40 0.43 0.49 0.43

CBR (Das et al., 2020)† 0.70 0.83 0.87 0.77 0.38 0.46 0.51 0.43

PCBR (Das et al., 2020)† 0.77 0.85 0.89 0.81 0.43 0.49 0.55 0.48
CICBR (Ours) 0.80 0.88 0.89 0.85 0.46 0.50 0.59 0.51

Compared with CBR-based baselines, the link prediction results of our pro-
posed CICBRmodel on all experimental datasets are obviously improved. What’s
more, under the FB122 (Test-ALL), NELL-995 and WN18RR datasets, our
CICBR model also can obtain the SOTA results against the rule-based and
embedding-based methods. This is because: (i) by utlizing the Graph Trans-
former architecture for earning and representating entities and relations in the
KG, richer feature information can be obtained to enhance inference and the
ability of perceptual feature difference between entities and relations; (ii) the
joint contextual entities and contextual relations information obtaining algo-
rithm JER-CIO is proposed to acquire more effective and roundly contextual
information for generating candidate paths in the reasoning stage, which can as
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fully as possible generate and calculate candidate entities so as to improving the
accuracy of model’s resoning precision.

In conclusion, based on the above comparative experiments, it is indicated
that by using the CICBR model proposed in this paper, more plentiful graph
features can be acquired, especially the relations information, and more effective
contextual information can be obtained to generate more paths conducive to the
reasoning for improving model’s reasoning accuracy and gain SOTA results on
all experimental datasets.

5 Conclusion

In this paper, we proposed a contextual information-augmented probabilistic
case-based reasoning model for KGR named CICBR. First, CICBR enhanced
the ability to extract and learn graph features, especially the easily neglected
relation features, by utilizing the Graph Transformer architecture. Secondly, CI-
CBR proposed a contextual information acquisition algorithm combining contex-
tual entities and contextual relations, which can obtain candidate paths through
similarity calculation and processing of the obtained entity and relation features
for further reasoning. Third, the probabilistic case-based reasoning method is
adopted to reason from the augmented acquired contextual information, which
can not only enhance the sensitivity to entity correlation but also provide more
attention to the relations between entities. Finally, extensive comparison experi-
ments on three benchmarks demonstrated that our proposed CICBR model can
achieve the SOTA reasoning performance against current CBR-based baselines.

Although our work can make improvements to current CBR-based approaches,
there still exists the problem of how to obtain more effective contextual informa-
tion. In the future, we are interested in presenting CBR methods that are more
in line with the KGR to improve the reasoning ability of the model.
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7. Dubitzky, W., Büchner, A. G., & Azuaje, F. J. (1999). Viewing knowledge manage-
ment as a case-based reasoning application. In AAAI Workshop Technical Report
WS-99-10 (pp. 23-27).

8. Bartlmae, K., & Riemenschneider, M. (2000, October). Case Based Reasoning for
Knowledge Management in KDD Projects. In PAKM.

9. Das, R., Godbole, A., Dhuliawala, S., Zaheer, M., & McCallum, A. (2020).
A simple approach to case-based reasoning in knowledge bases. arXiv preprint
arXiv:2006.14198.

10. Das, R., Godbole, A., Monath, N., Zaheer, M., & McCallum, A. (2020). Probabilis-
tic case-based reasoning for open-world knowledge graph completion. arXiv preprint
arXiv:2010.03548.

11. Dwivedi, V. P., & Bresson, X. (2020). A generalization of transformer networks to
graphs. arXiv preprint arXiv:2012.09699.

12. Pujara, J., Augustine, E., & Getoor, L. (2017, September). Sparsity and noise:
Where knowledge graph embeddings fall short. In Proceedings of the 2017 conference
on empirical methods in natural language processing (pp. 1751-1756).

13. Xiong, W., Hoang, T., & Wang, W. Y. (2017). Deeppath: A reinforcement learning
method for knowledge graph reasoning. arXiv preprint arXiv:1707.06690.

14. Guo, S., Wang, Q., Wang, L., Wang, B., & Guo, L. (2016, November). Jointly
embedding knowledge graphs and logical rules. In Proceedings of the 2016 conference
on empirical methods in natural language processing (pp. 192-202).

15. Dettmers, T., Minervini, P., Stenetorp, P., & Riedel, S. (2018, April). Convolutional
2d knowledge graph embeddings. In Proceedings of the AAAI conference on artificial
intelligence (Vol. 32, No. 1).
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