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Abstract. There has been a significant recent interest in algorithmic
fairness within data-driven systems. In this paper, we consider group
fairness within Case-based Reasoning. Group fairness targets to ensure
parity of outcomes across pre-specified sensitive groups, defined on the
basis of extant entrenched discrimination. Addressing the context of bi-
nary decision choice scenarios over binary sensitive attributes, we develop
three separate fairness interventions that operate at different stages of
the CBR process. These techniques, called Label Flipping (LF), Case
Weighting (CW) and Weighted Adaptation (WA), use distinct strate-
gies to enhance group fairness in CBR decision making. Through an
extensive empirical evaluation over several popular datasets and against
natural baseline methods, we show that our methods are able to achieve
significant enhancements in fairness at low detriment to accuracy, thus
illustrating effectiveness of our methods at advancing fairness.
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1 Introduction

Algorithmic fairness [24] has attracted significant scholarly attention in recent
times. While this has seen most interest in the case of machine learning (ML) [11],
fairness has been explored within allied data-driven areas such as retrieval and
recommenders [15] and natural language processing [10]. There has been emerg-
ing recent interest in fairness within Case-Based Reasoning (CBR) as well, with
the first paper on algorithmic fairness in CBR appearing recently [8].

Fairness, as a concept with origins and a long legacy in the social sciences,
is a deeply nuanced and contested construct. There are several different defi-
nitions of fairness [22], many of which are in conflict with one another. Two
streams of fairness concepts, viz., individual and group fairness [14], have been
subject to much study within data-driven learning. Individual fairness targets
to ensure that all objects are treated uniformly, so that similar objects (simi-
larity defined appropriate to the task) are accorded similar outcomes. In sharp
contrast, group fairness is anchored on the notion of sensitive attributes (e.g.,
gender, race, nationality, religion), and seeks to ensure that outcomes are fairly
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distributed across groups defined on the basis of such sensitive attributes. Sen-
sitive attributes are not defined at a technical level, but chosen on the basis of
extant evidence of historical and contemporary discrimination. Group fairness,
often referred to variously as outcome fairness and distributive justice, is thus
focused on ensuring that the workings of the algorithms are not configured in
a way that some sensitive groupings are advantaged more than others. Adher-
ence to group fairness may thus require that individuals who are similar on a
task-level basis be treated differently (leading to possible violations of individual
fairness), so the outcomes along the sensitive groupings are uniform. In contem-
porary society, the workings of meritocracy could be thought of as close to the
spirit of individual fairness, whereas affirmative action and policies targeted to
level off gender and race gaps (in pay, education, or other forms of achievement)
are aligned with the notion of group fairness. It is also useful to note that there
are latent similarities in the structures of these notions [6].

CBR systems, in sharp contrast to mainstream ML, are non-parametric mod-
els in that they do not involve the construction of a statistical model of a fixed
and predetermined capacity. This has significant ramifications in analyzing, as-
similating and mitigating algorithmic unfairness within them. As a case in point,
a recent fairness intervention in a non-parametric local neighborhood-based out-
lier detection mechanism [12] was based more on statistical corrections using
local neighborhood properties, as opposed to the usage of fairness optimization
objectives in conventional ML tasks (e.g., [3]). The only work on fair CBR [8] is
also divergent from the additional objective approach in that it adopts a met-
ric learning approach, which involves modifying the similarity knowledge con-
tainer to achieve the desired fairness goal. Their model, FairRet [8], is focused on
mitigating underestimation bias towards minority protected groups. This, while
using sensitive groups, may be seen as using a restricted form of group fairness.

In this paper, for the first time to our best knowledge, we initiate research
into group fairness - defined as parity of outcomes across sensitive groups - in
case-based reasoning. Our focus is on CBR systems that assign binary outcomes
and on enhancing uniformity of outcomes across two groups defined over a bi-
nary sensitive attribute (e.g., male/female, white/non-white). We develop sep-
arate fairness-targeted interventions at three stages viz., pre-processing, weight-
ing and retrieval. While our pre-processing intervention targets changing the
data labelling in a targeted manner, our weighting approach assigns weights
to individual cases to enhance fairness in outcomes. The third approach is an
adaptation-stage approach where the aggregation mechanism is modified towards
the fairness goal. Through extensive empirical validation over several real-world
datasets, we illustrate the effectiveness of our methods in reducing the disparity
of outcomes across the sensitive attributes.

2 Related Work

While there has been much work on fairness within ML [11], there has been,
as we mentioned earlier, just one prior work on fairness in CBR [8]. Fairness
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has also been explored within the context of information retrieval; this relates to
CBR in that CBR also encompasses a retrieval step, though it goes much further
than just presenting retrieval results. We briefly summarize related work within
this section. We particularly focus on work relating to group fairness within this
section, given the focus of this paper.

2.1 Fairness in Retrieval and Recommender Systems

Fairness considerations in retrieval and recommenders [15] have centred on en-
suring diversity across sensitive attributes within the top-k retrieved results. This
has often been termed as proportional fairness [30] given that the intent is to
ensure that the top-k results reflect the proportions of sensitive attribute groups
within the broader dataset. These are often realized using bespoke constraints
such as diversity constraints [27]. Apart from demographic-sensitive groupings,
fairness has also been explored over political bias [19] and popularity [31]. An-
other line of exploration has been to relax the query-level fairness proportionality
constraint and ensure that there are no statistically significant deviations from
proportionality across queries [29].

Apart from such generally applicable work on fairness in retrieval, fairness
has been explored within specific contexts of retrieval, such as multi-stakeholder
interactions within recommender systems viz., 2-sided fairness [23]. Work on
group recommender systems [26][20] has focused on delivering better recom-
mendations to groups of people by aggregating individual preferences of group
members, modelling social factors such as personality awareness and trust be-
tween them. These approaches, however, do not concern themselves with the
disparity between different groups and thus, have limited applicability in group-
fair CBR. Novel fairness constructs such as attention fairness have been devised
to account for the case that human users tend to focus on the top results within
an ordered result display paradigm [5]. While the above interventions are inter-
esting and pertinent to the retrieval stage, fairness in CBR systems would need
to be conceptualized across the different stages. For example, ensuring propor-
tional representations in the results may do little to further fairness, unless the
downstream aggregation/adaptation step is able to make use of it. Thus, such
retrieval-focused work has limited applicability within the context of fair CBR.

2.2 Fair Local Outliers

Local neighborhood-based approaches have been quite popular within the task of
outlier detection [9, 18]. While these have very limited relevance to CBR beyond
the usage of local neighborhood-based retrieval, their meta structure of retrieval
followed by bespoke processing of retrieved sets to arrive at a decision resonates
with the spirit of CBR. The downstream processing is very specific to outlier
detection and is thus highly divergent from the intent and structure of CBR
systems.

A recent work [12] considers a fairness-oriented adaptation of arguably the
most popular local neighborhood-based outlier detection algorithm, LOF [9].
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The proposed method, FairLOF [2], does statistical ’corrections’ for fairness at
three levels, viz., the diversity of local neighborhood as measured over sensitive
attributes, the overall representational skew between groups defined over sensi-
tive attributes, and corrections for the extent to which the similarity knowledge
container embeds sensitive attribute knowledge within itself. The corrections
are focused on fairness insofar as they relate to the downstream statistical pro-
cessing of the LOF method, and are, thus, again of limited applicability to the
considerations of CBR.

There has been some work in detecting outlying cases for case base mainte-
nance viz., the Repeated Edited Nearest Neighbour approach (RENN) [1]. Here,
a case is considered noisy and is removed if its class label differs from the major-
ity of its k nearest neighbors. While this case base maintenance paradigm aligns
with the spirit of the CW approach that we present, RENN does not relate to
sensitive attributes, and is thus orthogonal to group fairness.

2.3 FairRet: Algorithmic Fairness in CBR

We now briefly summarize a recent work [8], the only extant work on algorithmic
fairness in CBR to our best knowledge. This work focuses on addressing an
intricate notion of algorithmic discrimination called underestimation bias. We
illustrate this by using a simplistic example. Consider a binary choice scenario
such as those encountered in job application shortlisting, where each application
is to be either shortlisted or rejected. Let us suppose that the shortlisting success
rates for males and females are 50% and 40%, respectively, reflecting gender
discrimination as often observed in society. However, the algorithmic decision-
making process may further accentuate this skew and offer an even lower success
rate, say 30%, to female applicants. This is an instance of underestimation bias,
the focus of FairRet. The underestimation, in this case, may be quantified as
0.75 (i.e., 30/40, expressed as a percentage) ([8], Sec 2.1), and is sought to be
remedied by modifying the similarity knowledge container using metric learning
approaches realized using multi-objective particle swarm optimization.

It may be noted that rectifying underestimation bias would bring the suc-
cess rates for females to 40%, which is still significantly lower than the success
rates for males, which stands at 50%. Thus, FairRet is aligned with fairness con-
ceptualizations such as separation [4] that seek to equalize deviations or error
rates (cf. success rates) for different sensitive groups, thus implicitly considering
the decision-profile embodied in the labelled data as the reference standard. In
other words, addressing underestimation bias would not achieve group fairness
which is often conceptualized as independence, the notion that seeks equalizing
success rates across sensitive groupings. Independence, often referred to as sta-
tistical parity [16], requires that there be a parity in the distribution of outcomes
across sensitive attribute groups. Thus, group fairness (or statistical parity or
independence), as instantiated within our example scenario, would target that
the success rates for females be enhanced to 50%, or otherwise equalized across
the gender groups; for example, by equating the success rates in decision making
for both groups at 45%.
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Our work, in contrast to FairRet, considers achieving independence or group
fairness, which is about equalizing success rates across demographic groups. To
summarize, in contrast to FairRet that uses the decision profile within the la-
belled data as the target for fairness, our focus is on using uniformized success
rates across sensitive groups as the fairness target. Yet, given the high-level sim-
ilarity in that biased behavior is sought to be mitigated and given that FairRet
is the only extant work on fairness in CBR, we use FairRet as a baseline.

3 Problem Definition

We first outline the CBR decision making context we address, followed by the
targeted fairness requirement and the fairness metric which we consider.

3.1 CBR Decision Making Scenario

Consider a dataset X = {. . . , X, . . .}, where each element X corresponds to a
case. X, as is typical of cases in CBR, comprises two parts, the data d and
the label l. Additionally, each X is also associated with a value for a sensitive
attribute denoted as s. Thus, X = [d, l, s]; d, l and s will have overloaded inter-
pretations for ease of ensuing narration, but the intended interpretation will be
clear from the context. As a first work towards group fairness, we restrict our at-
tention to binary decision choices (so, l ∈ {0, 1}) and binary sensitive attributes
(so, s ∈ {0, 1}). In a concrete scenario within a job shortlisting context, each X
could comprise a historical job application (as d), the decision accorded to it (as
l), with s denoting a sensitive demographic of the applicant that is known to be
a facet of social discrimination (e.g., male/non-male, or white/non-white).

We now consider a CBR system C which makes use of the case base X to
make decisions over an incoming stream of data points (job applications), which
we will denote as Y = {. . . , Y, . . .}. Each data point is, much like the case of X ,
associated with a value for the sensitive attribute too. Thus, Y = [d,−, s]. The
task of the CBR system is to fill up the missing label for elements in Y with
its predictions. We will denote the labelling choice offered by the CBR system
as l = C(Y ). In the interest of general applicability across diverse scenarios, we
would like the CBR system to not explicitly refer to the sensitive attribute of Y in
making its decision; thus, C(Y ) does not depend on s. Within the job shortlisting
scenario, this amounts to creating a CBR system that will make choices over
applications without explicitly referring to gender/race membership.

3.2 Group Fairness

Having laid out the CBR decision-making scenario and pertinent notations, we
are now ready to present our group fairness consideration in technical terms.
Consider that C has been applied over all elements of Y. We would be able to
measure the success rates for the separate demographic subsets of Y under the
decisions offered by C.



6 S. Mitra et al.

SRC(Y, s = 0) =

∑
[d,−,s]∈Y I(l = 1 ∧ s = 0)∑

[d,−,s]∈Y I(s = 0)
(1)

where I(.) is the identity function which evaluates to 1 when the inner con-
dition is satisfied and 0 otherwise. Simply stated, SRC(Y, s = 0) is the success
rates of the s = 0 subset of Y under C. Analogously, SRC(Y, s = 1) is also de-
fined. Our intent is to ensure that the success rates of the separate demographic
groups are as similar as possible.

SRC(Y, s = 0) ≈ SRC(Y, s = 1) (2)

3.3 Disparity

Our focus is on ensuring that the design of C is such that the disparity between
success rates of sensitive sub-groups is minimized as much as possible. Towards
this, we use statistical disparity as the evaluation metric, defined as the following:

SDisp(C,Y) = |SRC(Y, s = 0)− SRC(Y, s = 1)| (3)

This, or its variants, have been explored in various efforts in fair AI literature.
For example, the above metric corresponds to the violation of statistical parity
metric in [21] (Sec 2.3.1) and demographic (dis)parity in [25] (Sec 3.2). This will
form our primary metric towards profiling the methods on group fairness in our
empirical evaluation. As obvious lower values of SDisp are more desirable.

4 GFCBR: Our Methods for Group Fair CBR

In this section, we now outline our suite of methods for group fairness within
CBR, which we will denote as GFCBR. This comprises three approaches viz., La-
bel flipping (LF) as a pre-processing method, Case weighting (CW) as a method
to weigh cases based on their context, and Weighted adaptation (WA) as a
method for aggregating/adapting retrieved results to form a labelling decision.

4.1 LF: Label Flipping

As outlined in Section 2.3, the target of group fairness may be misaligned with
the labelling in the data within the case base X . Even if the data labelling offers
males and females success rates of 50% and 40% respectively, the intent of group
fairness requires us to produce equalized success rates, one that cannot obviously
be achieved by strict adherence to labelling patterns. In this backdrop, our label
flipping technique targets to alter the ground truth labellings in the case base
so that it becomes feasible for C to achieve group fairness.
CBR Model: To ensure generality of the label flipping-based pre-processing
method, we assume a very simple design for a CBR decision maker which we
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outline upfront. Given a similarity function to judge similarities between cases,
the CBR decision for an object is given as follows:

CX (d) = MajVote(top-kX (d)) (4)

where CX denotes the CBR system working over the case base X , top-kX (d)
denotes the top-k most similar data objects to d from within X , and MajVote(.)
simply computes the majority vote (recollect we are dealing with binary la-
bellings) from across the objects. To avoid ties, k may be set to an odd number.
Leave-one-out CBR: Towards ease of describing the label flipping approach,
we introduce a leave-one-out instantiation of C which we denote as CL1O. The
leave-one-out CBR system operating over X takes each element of X ,X = [d, l, s]
and determines a label for it using the other objects in X as the case base. This
determination may be different from the object’s label l since the neighbors of the
object may mostly have the other label. Once decisions are made for each element
of X using the leave-one-out approach, we can compute the SDisp(CL1O,X ) as
the disparity between the success rates of the s = 1 and s = 0 subgroups within
X when assessed using the decisions from the CL1O model.
Label Flipping Approach: Having outlined the context and necessary back-
ground, we now describe our label flipping approach, which is outlined in Al-
gorithm 1. The label flipping approach considers modifying the case base X by
flipping some labels in its cases greedily, with an intent of choosing to flip the
label of the object that reduces SDisp(CL1O,X ) most, at each step. Once the
SDisp(., .) stabilizes - i.e., further label flips cannot decrease the disparity any
further - the flipping process is stopped. We also introduce an additional pa-
rameter called the budget b, which allows for stopping earlier as necessary. The
budget is specified as a percentage of the case base (e.g., 1%) which restricts the
label flipping approach to making at most b% label flips in the dataset, even if
convergence is not achieved by then. The high-level intuition behind this label
flipping approach is that a case base over which CL1O is able to achieve low
disparity would facilitate group fair decisions for new cases too.

Once the label flipping process is complete, we end up with a modified case
base X ′ which differs from X in that some object labels have been flipped. The
modified CBR system is simply CX ′ , which differs from CX in that it works over
the modified dataset. This modified CBR system CX ′ is now ready to be applied
over a new stream of cases - such as an unseen dataset Y - and that it works over
a label-flipped dataset would aid it in achieving lower SDisp over Y. We note
that this approach may be seen as creating an alternative case base which would
be used for decision making. The original experiences in the case base may be
maintained separately as a version of record.

4.2 CW: Case Weighting

Complementary to actually changing labellings in the data as the strategy in
LF, CW adopts a different strategy towards the same goal of enhancing group
fairness. The strategy within CW is to augment each case with a numeric weight
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Algorithm 1: Label Flipping (LF)

Input: Case base X , k, budget b
Output: A modified case base X ′

X ′ = X
while SDisp(CL1O,X ′) has not converged and budget b has not been reached
do

X∗ = argminX∈X ′ SDisp(CL1O,X ′ ∪ {labelflip(X)} − {X})
X ′ = X ′ ∪ {labelflip(X∗)} − {X∗})

end
return X ′

within [0, 1] in such a way that cases that are aligned with group fairness get a
higher weighting than others. We use the leave-one-out mechanism introduced
in Section 4.1 in determining case weights.

Advantaged Group: In our scenario of binary decision choices, the existence
of disparity entails that one of the sensitive groups has a higher success rate than
the other. In typical scenarios involving systemic discrimination, the advantaged
group is often consistent. This could be males in the case of gender as the
sensitive attribute or white in the case of ethnicity. Without loss of generality,
we will assume that s = 1 is the advantaged group.

Neighborhood Misaligned Cases: Consider the leave-one-out mechanism,
CL1O, applied over a case X = [d, l, s] ∈ X . The decision by CL1O, denoted
lL1O = CL1O(d), could be different from the actual label associated with X, i.e.,
l. These cases, where l ̸= lL1O, indicate that they are, to some extent, misaligned
with their neighborhood. The decision preference of their neighboring cases, as
reflected through CL1O, is different from their own label. Towards designing CW,
we posit that such cases with neighborhood misalignment could be differentially
weighted towards enhancing group fairness.

Differentiated Weighting:We now outline the differentiated weighting heuris-
tic, which is at the core of the CW technique. Cases that are aligned with their
neighborhood, i.e., with l = lL1O, are assigned a weight of unity. For neighbor-
hood misaligned cases, we set weights based on how well their neighborhood is
aligned with the goal of group fairness. We will illustrate this briefly.

On considering the scenario of cases from the disadvantaged group, denoted
as s = 0, if the neighborhood decision (lL1O) indicates a positive outcome, but
the actual label is negative, it implies that the case is in a neighborhood that sup-
ports group fairness, since the prediction favours the selection of disadvantaged
cases. Group fairness means that cases from the disadvantaged group should be
assigned positive outcomes more often than what the labels suggest. We assign
a weight of λ ∈ [0, 1] to such cases, since, the prediction albeit incorrect is one
that promotes the selection of minorities. Second, if the neighborhood decision
is in favour of a negative outcome, but the actual case label is positive, we judge
this to be an outlier, and assign a weight of 0.
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In other words, our case weight is dependent on how well the neighborhood,
whose decision is reflected in lL1O, is aligned with the notion of group fairness.
The above logic is flipped in the case of the advantaged group, s = 1, since
we would like them to be assigned positive decisions at a lower rate than that
supported by the labels. This weighting scheme is summarized in Eq 5. λ serves
as a hyperparameter to this approach which would need to be pre-specified.

w(X = [d, l, s]) =



1 lL1O = l

λ s = 0 ∧ lL1O = 1 ∧ l = 0

0 s = 0 ∧ lL1O = 0 ∧ l = 1

0 s = 1 ∧ lL1O = 1 ∧ l = 0

λ s = 1 ∧ lL1O = 0 ∧ l = 1

(5)

Algorithm 2 is then a simple application of this weighting scheme in round-
robin fashion across the cases in the case base.

Algorithm 2: Case Weighting (CW)

Input: Case base X , k
Output: Weights for each case in X , denoted w(X), ∀X ∈ X
for X = [d, l, s] ∈ X do

lL1O = CL1O
X (X)

Set w(X) as in Eq. 5
end
return {w(X)|X ∈ X}

CW-Weighted CBR: The weights assigned to cases would need to be exploited
in decision making, should a CBR system working over a weighted case base is
to provide enhanced group fairness. The natural way would be to aggregate the
labels from the top-k neighbors for a new case using weighted aggregation, and
choose the label associated with the highest aggregate weight. This is illustrated
as below:

CCW
X (d) = argmax

label∈{0,1}

∑
X=[d,l,s]∈top−kX (d)

w(X)× I(label = l) (6)

In our empirical evaluation, we will consider such a CBR system while profiling
the effectiveness of CW.

4.3 WA: Weighted Adaptation

Our third technique, WA, adopts a group-fairness oriented strategy that op-
erates much more downstream than either LF or CW. In particular, the case
base X is kept as such, without being subject to label modifications or apri-
ori neighborhood-based weightings. However, cases that are retrieved as similar
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ones to a query case are accorded weights based solely on their (l, s) combination,
while adapting their labels to make a decision on the query case.
Weight Formulation: The weight formulation in WA, unlike that in CW, is
not dependent on the neighborhood of the case and is solely determined by
the combination of (l, s) values associated with a case. Consider a particular
(l, s) combination, such as (l = 1, s = 0); this denotes a case where a positive
outcome is assigned to a data object from the disadvantaged group. Similarly,
(l = 1, s = 1) denotes a case where a positive outcome is associated with a data
object from the advantaged group. In the interest of ensuring group fairness, we
would naturally like the former to have a higher influence in any decision-making
process. Similarly, among (l = 0, s = 0) and (l = 0, s = 1), we may want the
former to have a lower weighting in our interest to push up the success rate for
the disadvantaged group. Additionally, we would like the differentiated weighting
to reflect the quantum of the extant disparity in success rates across sensitive
groups, as estimated using the leave-one-out mechanism. Our weighting scheme
is outlined below:

w(l, s) =

1
|X | ×

∑
X∈X I(CL1O(X) = l)

1∑
X∈X I(X.s=s) ×

∑
X∈X I(CL1O(X) = l ∧X.s = s)

=
pL1O(l)

pL1O(l|s)
(7)

The weighting for a case with (l = 1, s = 0) would simply be the ratio of the
rate of l = 1 decisions by the CL1O system, to the rate of l = 1 decisions by the
same system for s = 0 data objects. The shorthand representation at the right
end of Eq. 7 illustrates the notion in more intuitive notation using probabilities
and conditional probabilities. Suppose the overall success rate is 50%, with the
disadvantaged group recording a success rate of 40% and the advantaged group
recording 60%, the weight associated with positive-labelled data objects from
the disadvantaged and advantaged group would respectively be 1.25 (= 0.5

0.4 ) and
0.83 (= 0.5

0.6 ). Thus, disadvantaged objects bearing a positive label get a higher
say in the process, in alignment with the spirit of group fairness. If the overall
success rate of 50% is borne out of a higher disparity - say, 70% and 30% for the
advantaged and disadvantaged groups - the analogous weightings become more
divergent, at 1.67 and 0.71. This illustrates how the quantum of extant disparity
factors into the weightings.

Given that we address the binary decision choice scenario with binary sensi-
tive attributes, there are only four distinct (l, s) combinations. Thus, each case
would be associated with one of four weights, making WA an extremely simple
weighting formulation.
WA-Weighted CBR: The WA weights, as introduced above, are incorporated
into the decision-making process analogously to the case of CW weights.

CWA
X (d) = argmax

label∈{0,1}

∑
X=[d,l,s]∈top−kX (d)

w(l, s)× I(label = l) (8)

As in the case of CW, we will use CWA in our empirical evaluation to profile
group fairness.
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4.4 Discussion

All of the above three techniques involve the usage of the leave-one-out scheme,
often multiple times. Given that all three techniques keep the similarity measure
(i.e., the similarity knowledge container) consistent, one may pre-compute the
nearest neighbor set for each object in the case base beforehand, and simply look-
up nearest neighbors, rather than computing the top-k neighbors afresh. Such
pre-computation would render the implementation of the techniques quite inex-
pensive in computational terms. Further, all our methods are best implemented
as a pre-processing scheme, which may be performed once upfront at the CBR
system deployment time, and do not have any further bearing on query response
times. This allays computational cost considerations.

5 Experimental Evaluation

We now present an empirical analysis of our proposed approaches on several
real-world datasets against the FairRet baseline.

5.1 Datasets, Setup and Evaluation Setting

We first start by describing our datasets and experimental/evaluation setup.

Dataset Number of Protected Percentage
Records Attribute Disadvantaged

COMPAS 4743 Sex 19.8%
UCICC 30000 Gender 39.6%
Census 48842 Sex 33.2%

Exemplar 37607 Age 32.8%

Table 1. Dataset Summary

Datasets/Setup:We use
four popular binary la-
belled datasets that have
been popular in fairness-
related studies viz., COM-
PAS violent recidivism
[13], UCI Credit Card
[28], Census [17], and Ex-
emplar [7]. The COM-
PAS dataset is used to
predict violent recidivism,
while the UCI Credit
Card (UCICC) dataset predicts the risk of credit card default. The Census
dataset, often called the Adult Income dataset, aims to predict income, and
the Exemplar dataset predicts income brackets based on age (already binarized
in the dataset, perhaps as young and elderly). In all of these datasets, gender/sex
is a protected attribute, except for Exemplar, where age is used as the protected
attribute. Table 1 summarizes the key statistics of each dataset, including the
number of samples and the proportion of the minority group. Towards using
these datasets in our empirical validation, we split each dataset into three parts:
70% as the case base (i.e., X ), 10% for validation, and 20% for evaluation (i.e.,
Y). Unless mentioned otherwise, we consistently set k = 5 and b = 2% (LF), with
λ tuned based on the validation set. Apart from comparing against FairRet, our
main baseline, we also indicate the results achieved by a simple majority-voting
based CBR system over the dataset; this will be denoted as Base.
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Evaluation Metrics: Our primary evaluation metric, as introduced in Sec 3.3,
is the disparity in the outcome (measured as success or failure rate within the
context of binary decision scenarios), which we would like to be as low as pos-
sible. We express disparity as the difference in percentage success rate and thus
may be interpreted as a percentage. Typical fairness-agnostic algorithms target
to achieve as high an accuracy as possible. In seeking to heed an additional con-
straint, that of fairness, it is natural to expect that the attention to accuracy,
and thus, the accuracy achieved, will be affected. Yet, we can potentially claim
some success as long as the fairness gains are significantly higher than the ac-
curacy detriment. Thus, disparity and accuracy are the focus of our empirical
evaluation.

5.2 Disparity Results

Dataset Label Base FairRet LF CW WA

COMPAS 8.6% 6.3% 2.9% 0.3% 5.2% 0.6%
UCICC 3.4% 1.8% 1.7% 0.5% 1.1% 0.2%
Census 19.5% 17.8% 2.6% 7.9% 2.6% 1.9%

Exemplar 13.7% 8.1% 6.7% 6.3% 0.5% 2.2%

Table 2. Summary of Disparity Results

Our summary of dis-
parity results appears
in Table 2. The base
system is seen to
record a high dispar-
ity, even recording a
high of ≈18% in the
Census dataset. The
disparity as assessed
using the ground truth
labels over the test

set, is also shown for reference under the column Label in Table 2. FairRet is
seen to bring down the disparity significantly from Base and Label in most cases.
However, in each dataset, one of our methods ends up recording the lowest dis-
parity, sometimes achieving levels as low as 0.2%. In particular, WA and CW
beat the FairRet method in each dataset. This is quite expected, since the target
of FairRet is just to rectify underestimation bias, whereas our methods target
to go further, and towards full parity of success (failure) rates.

The performance of the LFmethod deserves closer attention. The LFmethod
is extremely effective for COMPAS and UCICC, whereas the effectiveness in
the other datasets is not yet to desirable levels; in fact, it fares worse than
FairRet on the Census dataset. LF, it may be recollected, is a post-processing
method which makes use of the simple CBR system; thus, it is quite limited in
its ability to address the fairness consideration, unless the extant unfairness may
be attributed to a small number of labels. Its greedy choice of the label to flip
is another limiting factor, as we will see in a later section.

In summary, our methods are able to achieve very low levels of disparity, and
their effectiveness in advancing the group fairness consideration is very apparent
from the results in Table 2. It is notable that the results are at < 1% level in
two datasets, indicating that the results are already very close to perfect group
fairness.
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5.3 Accuracy Results

Dataset Base FairRet LF CW WA

COMPAS 91.59% 86.60% 84.31% 86.05% 84.27%
UCICC 81.65% 79.39% 78.92% 78.84% 78.24%
Census 81.82% 77.00% 79.78% 79.31% 79.10%

Exemplar 86.46% 79.62% 84.12% 79.56% 78.40%

Table 3. Summary of Accuracy Results

Table 3 records the
accuracy profile of our
methods and the base-
lines. As expected,
the Base CBR sys-
tem achieves the best
accuracy, with being
truthful to labels be-
ing its sole focus. The
key analysis point in
this case is that of the
comparison between FairRet and our methods. While our methods record, for
most cases, a significant improvement over FairRet and Base in terms of fair-
ness, we would expect that there would be an analogous drop in accuracy for
our methods. The effectiveness of our methods depends on how low that drop is,
when measured against FairRet. We can see that the drop in accuracy for our
methods against FairRet is limited to, in most cases in the ≈ 1% range, which
contrasts favourably against the significant fairness gains analyzed earlier. This
indicates that our methods are able to operate at an accuracy configuration sim-
ilar to FairRet, while achieving moderate to significant fairness gains over it. In
one case, that of Census, it is notable that our methods achieve an improvement
in accuracy over FairRet, which is more than encouraging.

5.4 Parameter Sensitivity Analyses

Dataset #Flips % of Dataset

COMPAS 41 0.86%
UCICC 37 0.12%
Census 78 0.16%

Exemplar 54 0.14%

Table 4. Analysis of Flips by LF

Having established the effectiveness of our
methods to improve fairness achievement at
low costs to accuracy across a number of
datasets, we now turn our attention to an-
alyzing the sensitivity of our methods to
their hyper-parameters. One may recollect
that there are two hyper-parameters among
our methods, the budget b which determines
the number of label flips in LF, and the pa-
rameter λ within CW which determines the
weights of some cases. This is in addition to
the CBR neighborhood size parameter, i.e., k.

Parameters within Our Methods

We now analyze the two parameters within our methods viz., flipping budget b
(LF) and weighting parameter λ (CW).
Label Flipping Budget: While we set b = 2% to allow for up to 2% label flips,
the label flipping procedure stopped far earlier due to convergence in disparity
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(recall the stopping condition in Alg 1). As shown in Table 4, LF stopped after a
few scores of flips even in our larger datasets. While it is promising to note that
the fairness improvements achieved by LF are at the expense of just a few label
flips, deepening the effectiveness of the LF technique may require devising a new
non-greedy heuristic to continue label flips even when the disparity converges
within the context of a single decision step.
Weighting Parameter in CW, λ: Another parameter within our methods
is the weighting parameter in CW, denoted as λ. As indicated earlier, this was
determined based on the validation set. Yet, across the widely varying datasets,
a λ ≈ 0.1 was found to be the most suitable value. This indicates that λ is not
highly sensitive to changes in datasets, and a reasonably small value, one that
has the ability to signal the direction of the intended change (wrt disparity), is
what matters.

Neighborhood Size

The generic CBR parameter, that of the choice of neighborhood size, has been
consistently set to k = 5 in our experiments. We did observe a small but con-
sistent trend across variations in k, across datasets. Higher values of k led to
improved fairness at the cost of reduced accuracy and vice versa. This is in-
tuitively explained in that higher values of k lead to attention to wider neigh-
borhoods, expanding the remit of the fairness interventions that are employed.
These trends remained consistent across datasets; this could mean that k could
work as a knob parameter to tune the attention to fairness.

6 Conclusions and Future Work

We considered the task of designing group fair CBR schemes, which seek to
ensure that the disparity in outcomes across demographic groups is minimized.
We developed three techniques, a pre-processing based label flipping scheme
(LF), a contextual case weighting scheme (CW) and a weighted case-adaptation
methodology (WA). We outlined how they would facilitate group fairness in CBR
through various distinct ways. Further, in an empirical evaluation across mul-
tiple real-world datasets, we illustrated the empirical improvements in fairness
that our methods achieve. Our experiments illustrate that improved fairness is
achieved at low cost to accuracy, making them effective fairness-oriented CBR
techniques.

Future Work

While our separate methods were designed for fairness interventions at different
stages of the CBR process, it would be interesting to understand the comple-
mentarity between these methods and exploit them for application in scenarios
where the user has control over all stages of the CBR process. We are consid-
ering extending this to cover multi-choice and structured decision scenarios and
multi-valued sensitive attributes.
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18. Kriegel, H.P., Kröger, P., Schubert, E., Zimek, A.: Loop: local outlier probabili-
ties. In: Proceedings of the 18th ACM conference on Information and knowledge
management. pp. 1649–1652 (2009)



16 S. Mitra et al.

19. Kulshrestha, J., Eslami, M., Messias, J., Zafar, M.B., Ghosh, S., Gummadi, K.P.,
Karahalios, K.: Search bias quantification: investigating political bias in social me-
dia and web search. Information Retrieval Journal 22, 188–227 (2019)

20. Kunaver, M., Porl, T.: Diversity in recommender systems a survey. Know.-Based
Syst. 123(C), 154–162 (may 2017). https://doi.org/10.1016/j.knosys.2017.02.009,
https://doi.org/10.1016/j.knosys.2017.02.009

21. Le Quy, T., Roy, A., Iosifidis, V., Zhang, W., Ntoutsi, E.: A survey on datasets
for fairness-aware machine learning. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery 12(3), e1452 (2022)

22. Narayanan, A.: Translation tutorial: 21 fairness definitions and their politics. In:
Proc. conf. fairness accountability transp., New York, USA. vol. 1170, p. 3 (2018)

23. Patro, G.K., Biswas, A., Ganguly, N., Gummadi, K.P., Chakraborty, A.: Fairrec:
Two-sided fairness for personalized recommendations in two-sided platforms. In:
Proceedings of the web conference 2020. pp. 1194–1204 (2020)

24. Pessach, D., Shmueli, E.: Algorithmic fairness. arXiv preprint arXiv:2001.09784
(2020)

25. Pessach, D., Shmueli, E.: A review on fairness in machine learning. ACM Comput-
ing Surveys (CSUR) 55(3), 1–44 (2022)

26. Quijano-Sanchez, L., Recio-Garcia, J.A., Diaz-Agudo, B., Jimenez-Diaz,
G.: Social factors in group recommender systems. ACM Trans. Intell.
Syst. Technol. 4(1) (feb 2013). https://doi.org/10.1145/2414425.2414433,
https://doi.org/10.1145/2414425.2414433

27. Yang, K., Gkatzelis, V., Stoyanovich, J.: Balanced ranking with diversity con-
straints. arXiv preprint arXiv:1906.01747 (2019)

28. Yeh, I.C., hui Lien, C.: The comparisons of data mining tech-
niques for the predictive accuracy of probability of default of credit
card clients. Expert Systems with Applications 36(2, Part 1), 2473–
2480 (2009). https://doi.org/https://doi.org/10.1016/j.eswa.2007.12.020,
https://www.sciencedirect.com/science/article/pii/S0957417407006719

29. Zehlike, M., Bonchi, F., Castillo, C., Hajian, S., Megahed, M., Baeza-Yates, R.: Fa*
ir: A fair top-k ranking algorithm. In: Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management. pp. 1569–1578 (2017)

30. Zehlike, M., Yang, K., Stoyanovich, J.: Fairness in ranking: A survey. arXiv preprint
arXiv:2103.14000 (2021)

31. Zhang, Y., Feng, F., He, X., Wei, T., Song, C., Ling, G., Zhang, Y.: Causal in-
tervention for leveraging popularity bias in recommendation. In: Proceedings of
the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval. pp. 11–20 (2021)


