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Abstract. Explainable Artificial Intelligence refers to methods that help
human experts understand solutions developed by Artificial Intelligence
systems in the form of black-box models, making them transparent and
understandable. This paper describes CBR-fox, a post-hoc model-agnostic
case-based explanation method for forecasting models. This method gen-
erates a case base of explanation examples through a sliding-window
technique applied over the time series. Then, these explanation cases
can be retrieved using a wide range of well-established metrics for time
series comparison. Moreover, we introduce and evaluate a novel similar-
ity metric named Combined Correlation Index. The proposed retrieval
approach considers as a signal the similarity series resulting from apply-
ing the comparison metrics. This way, the signal can be smoothed using
noise removal filters, such as the Hodrick-Prescott and low-pass filters,
to avoid maximally similar cases that may overlap or represent a local
slice of the source time series. The resulting signal allows then to foster
diversity in the retrieved explanation cases presented to the user. The
proposed case-based explanation approach is evaluated in the weather
forecasting domain using an artificial neural network as the black-box
model to be explained.

Keywords: Explainable Artificial Intelligence, Time Series Forecasting, Case-
based Explanation, Artificial Intelligence of the Things

1 Introduction

The current rise of the Internet of Things (IoT) technology has produced a
wide range of sensing solutions that are progressively being integrated into our
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daily life devices such as mobile phones or wearables [11]. The combination of
such sensing capabilities with Artificial Intelligence (AI) is producing Artificial
Intelligence of Things (AIoT) and Internet of Everything (IoE) applications that
provide an enhanced user experience [34].

Since IoT sensing devices obtain readings that vary in time, they have been
subject to time series analysis and modeling. A time series is a sequence of ob-
served values of a variable at equally spaced timestamps t, represented as a set of
discrete values [23]. Time series forecasting is the prediction of future data values
based on collected data and has been an area of great interest in science, engi-
neering, and business. Traditional time series forecasting is usually approached
by the analysis of its internal structure: autocorrelation, trend, seasonality, etc.,
to capture the pattern of the long-time behavior of the system [23]. These mod-
els predict future values of a target yi(t) for a given observed value i at a time
t. In IoT, these observed values usually represent measurements from sensors.
While this applies to univariate forecasting, the extension to multivariate models
can be performed without loss of generality [28]. Machine Learning (ML) has,
however, positioned as the next generation of time series forecasting models [1]
due to increasing data availability and computing power. One of the main tech-
niques in ML is artificial neural networks (ANNs), which have proven to be a
reliable tool for time series analysis [3], and numerous ANNs design choices have
emerged given the diversity of time series problems across multiple domains. Of
these designs, the most commonly used one in time series forecasting is recurrent
neural networks (RNNs) due to the natural interpretation of time series data as
sequences of inputs and targets [18].

Although ML approaches have demonstrated very good prediction perfor-
mance, they have significant limitations regarding their explainability. Neural
network models are considered as “black boxes” because their internal processes
are challenging to interpret with respect to the predictions they produce [10].
EXplainable AI (XAI) methods help human experts understand solutions de-
veloped by AI. Solving the black-box problem is a requirement for auditing the
reasoning behind incorrect predictions taken by AIoT systems, and foreseeing
the data patterns that may lead to a concrete prediction.

This paper describes CBR-fox (CBR - forecasting explanation), a post-hoc
sliding-window explanation-by-example method that enables the explanation of
black-box forecasting models using Case-Based Reasoning (CBR). This method
follows the twin surrogate CBR explanation approach that enables making the
forecasting process understandable [14]. Here, time series are split into different
time-window cases that serve as explanation cases for the outcome of the predic-
tion model. This paper exemplifies and evaluates the benefits of CBR-fox in the
weather forecasting domain. The presented use case is based on the readings from
an environmental sensor for mobile devices3 capable of sensing several weather
variables [21, 31], with the potential of ANNs to compute climate predictions.

3 BOSCH Sensortec BME680:
https://www.bosch-sensortec.com/products/environmental-sensors/gas-
sensors/bme680/
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The paper runs as follows. Section 2 presents the background of this work.
Then, Section 3 describes our case-based explanation method. Section 4 presents
the evaluation results and Section 5 concludes the paper and opens lines of future
work.

2 Background

This paper proposes the use of CBR as an explanation method for black-box
forecasting models. However, there are other approaches that have used CBR
as a forecasting technique itself in various domains, such as finance, energy, and
healthcare [9, 17, 25]. The benefits of generating predictions based on past cases
are the inherent interpretability of the CBR process. However, its accuracy has
been outperformed by other black-box models such as ANNs. This way, CBR is
more valuable as a post-hoc explanation method than as a forecasting model.
The work by [14] presents a systematic review of “ANN-CBR twins”: post-hoc
explanation-by-example approaches that rely on the twinning of ANNs with
CBR systems. One example is the proposal by Li et al. [16] which combines
the strength of deep learning and the interpretability of CBR to make an in-
terpretable deep ANN. This approach modifies the ANN architecture to encode
prototypes in the output layer that partially allows tracing the classification
path for a new observation. Bebarta et al. [2] also present an intelligent stock
trading system utilizing dynamic time windows with case-based reasoning, and
a recurrent function link artificial neural network (FLANN).

However, there are few works on case-based explanations for time series fore-
casting. Some of them have focused on counterfactual explanations [8], but not
many have aimed at time series. Corchado and Lees [7] presented a hybrid ap-
proach to forecasting the thermal structure of the water ahead of a moving vessel
that combines CBR and ANNs. Nevertheless, this approach is not a post-hoc
explanation method as it exploits the generalizing ability of the ANN to guide
the adaptation stage of the CBR mechanism. The paper by Olsson et al. [22]
presents a general method for explaining the predictions made by probabilistic
ML algorithms using cases. The method comprises two main parts: 1) a measure
of similarity between cases, which is defined with respect to a probability model,
and 2) a case-based approach to explaining the probabilistic prediction by es-
timating the prediction error. The paper demonstrates the use of this method
in explaining the predictions of the energy performance of households. Other
related case-based explanation methods also use sliding-window approaches to
generate cases. For example, in electric load forecasting [24] or speech emotion
recognition [26]. However, Lorenzo and Arroyo [19] present an alternative ap-
proach where clustering is applied over time series to obtain prototypes that act
as cases.
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Fig. 1: Global schema of the ANN-CBR twin approach of CBR-fox.

3 Method

The main contribution of this paper is the use of CBR for the generation of
explanations associated with the prediction of a certain black-box ANN model.
However, it is important to note that the proposed explanation method—CBR-
fox—is applicable to other forecasting black-box models. We propose a solution
for the explanation of the outcomes of the ANN, where a black-box system is
explained by an interpretable twin CBR system [14]. This approach is illustrated
in Figure 1, where the same dataset is used as the input of the ANN and to create
the explanatory cases provided by the CBR system.

Explanatory cases are generated using a sliding-window method over the
whole time series: Ct = ⟨[t−w, t], Rt+1⟩ for t ∈ [w,L− 1]where w is the window
size and Rt+1 is the solution of the case, which corresponds to the following
reading, and L is the length of the time series. This way, the case base is generated
from the source time series ts and contains len(ts)−w−1 cases that will be used
to explain any forthcoming prediction of the ANN. It is important to note that,
by using this sliding-window method, consecutive cases Ct and Ct+1 overlap in
w − 1 timestamps.

Once the case base is generated, the twin system works as follows. Given a
query timestamp tq, the ANN predicts the following time series values: Pred(tq).
In parallel, the CBR explanation system receives the corresponding time window
query Q = [tq−1−w, tq−1] and returns the most similar explanatory cases to ex-
plain the prediction Pred(tq). These explanatory cases can be directly presented
to the user or combined into a single explanation case.

The critical elements of the CBR-fox explanation method are the similarity
metrics, the retrieval and reuse processes, and the visualization of the explana-
tion cases. These steps are explained next.
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3.1 Time series similarity

The quality of the retrieved explanation cases highly depends on the similar-
ity metrics used to compare them. Next, we present several metrics that are
integrated into our case-based explanation method. Most are established state-
of-the-art metrics for this task, although we introduce a novel metric—denoted
CCI, Combined Correlation Index—specifically designed to retrieve time series
that resembles the original query.

– Dynamic Time Warping (DTW) computes the distance between two time
series by considering the pointwise (usually Euclidean) distance between
all elements of the two-time series. It then uses dynamic programming to
find the warping path that minimizes the total pointwise distance between
realigned series [27].

– Weighted Dynamic Time Warping (WDTW) incorporates a multiplicative
weight penalty corresponding to the warping distance (time series with lower
phase differences have a smaller weight imposed) [12].

– Derivate Dynamic Time Warping (DDTW) considers the ’shape’ of the time
series represented by the first derivative of the sequence in an attempt to
improve on DTW [15].

– Weighted derivative dynamic time warping (WDDTW) considers not only
the shape, but also the phase, of the time series by adding a weight to the
derivative [13].

– Move-Split-Merge (MSM) uses three fundamental operations: Move, Split,
and Merge, which have an associated cost and can be applied in sequence
to transform any time series into any other time series. The MSM distance
is defined as the cost of the cheapest sequence of operations that transforms
the first time series into the second one [30].

– Edit Distance For Real Penalty (ERP) proposes the idea of sequences of
points that have no matches [4] and attempts to align time series by carefully
considering how indexes are carried forward through the cost matrix.

– Longest Common Subsequence (LCSS) looks for the longest common se-
quence between two time series and returns the percentage of the longest
common sequence [33].

– Time Warp Edit (TWE), a measure for discrete time series matching with
time ‘elasticity’, is well-suited for the processing of event data for which each
data sample is associated with a timestamp [20].

– Edit Distance for Real Sequences (EDR) determines the percentage of el-
ements that should be removed from the input signals x and y such that
the sum of distances between the remaining elements is below a specified
tolerance level [5].

– Combined Correlation Index (CCI) is a novel metric presented in this paper
specifically designed from the point of view of explainability. It is aimed to
optimize the similarity between to time series according to the shape and
distance. It provides a way to measure how a given time window case C is
related to a target query window Q:

CCI(C,Q) = (α1 + ρ(C,Q)− α2∥(C,Q)∥) · α3 (1)
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Fig. 2: Example of the similarity series (n=6847). Maximally similarity peaks
tend to focus on a local portion of the case base.

Fig. 3: Example of high-frequency components (maximally similarity peaks) in a
subsample of the similarity series (n = 1000). Blue lines represent the maximally
similar cases (that tend to overlap or focus on a concrete portion of the case base)
whereas red lines represent similar but diverse cases.

where ρ is the function that calculates the Pearson correlation coefficient, and
the double bars represent the normalized Euclidean distance between those
vectors. The correlation component deals with the morphological similarity
of the time windows, while the Euclidean distance component deals with
the proximity between the time series in the given time windows. Remaining
parameters are used to shift the correlation coefficient (α1), normalize the
Euclidean distance (α2), and reshape the resulting values to the [0−1] range
(α3).

3.2 Retrieval process

The retrieval process first computes the similarity between the query and each
explanation case. It is computed using any of the metrics presented in the pre-
vious section, producing a similarity signal analogous to the one presented in
Figure 2, where values correspond to the similarity between the query and the
cases generated for every timestamp.
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Fig. 4: Top chart: application of the Hodrick-Prescott filter to obtain the ten-
dency series of the similarity signal. The middle and bottom charts represent
the iterative application of the LOWESS filter to the resulting signal. After suc-
cessive iterations, the similarity signal converges (bottom chart), allowing the
identification of the most similar but diverse explanation cases.

As we can observe, the similarity values for overlapping consecutive cases
yield undesirable high-frequency components. Figure 3 illustrates this problem
with a limited portion of the case base. Overlapping time windows tend to obtain
a very close similarity value, and therefore, if the retrieval process returns the
maximally similar cases directly, they will overlap and focus on a concrete slice of
the case. This is a well-known problem in the CBR field related to the retrieved
cases’ diversity [29]. In this figure, the indexes (timestamp t) of the maximally
similar cases are identified by a vertical blue line, whereas the horizontal seg-
ment on the bottom represents the time window [t − w, t] to be retrieved as
the explanation case. We can clearly observe that these maximally similar cases
overlap and only represent a concrete slice of the time series. In contrast, cases
represented in red are the top similar but diverse cases, where the locality effect
of maximal similarity is avoided by retrieving other suboptimal cases.

To address this problem, we apply the Hodrick–Prescott (HP) filter, a math-
ematical tool used in time series analysis for removing the cyclic component. The
HP filter has become a benchmark for getting rid of cyclic movements in data
and is broadly employed for macroeconomics research [32]. This filter returns
the tendency component of the signals represented by the top chart in Figure
4. Then, a low-pass filter can be applied over this tendency signal to smooth
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it progressively. Concretely, CBR-fox applies the Locally Weighted Scatterplot
Smoothing (LOWESS) method, a non-parametric technique for fitting a smooth
curve to data points [6]. After iteratively applying this filter until the resulting
signal no longer changes, we obtain a smoothed similarity signal as presented in
the bottom chart of Figure 4.

This smoothed similarity signal allows us to identify the k most similar ex-
planation cases to the query Q. To do so, its numerical derivative is obtained,
helping in the identification of peaks and valleys, which will be used to seg-
ment the series into groups of convex and concave curves. Convex curves are
then explored to find the timestamp with the highest similarity value. Only one
timestamp is obtained for each convex curve. Once the maximal values for each
convex curve have been collected, they are ranked and returned as the most
similar explanation cases presented to the user to explain the prediction given
by the black-box model.

3.3 Reuse

Once the k nearest neighbors have been retrieved, CBR-fox allows either to
present them directly to the user or combine them to obtain a joint explanation
case. In the latter case, we propose two different reuse strategies:

Simple Average. This strategy computes the average for each timestamp of
the k nearest neighbors:

S(C1, . . . , Ck) = [S0, . . . ,Sw−1], (2)
where

St =
1

k

k∑
i=1

Ci[t]

Weighted Average. Generates a combined solution through a weighted aver-
age according to the similarity of the k nearest neighbors:

Wt(C1, . . . , Ck) = [W0, . . . ,Ww−1], (3)
where

Wt =

∑k
i=1 Ci[t] · sim(Ci, Q)∑k

i=1 sim(Ci, Q)

3.4 Visualization

The visualization of the explanation cases to the user is exemplified in Figure
5. CBR-fox allows visualizing either all the k-NNs or the combined explanation
case. Notice how it also includes the prediction of the ANN, Pred(tq), as well as
the actual value stored in the solution of the case, Rt+1.
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Fig. 5: Visualization of the explanation cases to the user. Best explanation cases
(top) and combined explanation case (bottom). Window size: w = 14. The pre-
dictions from the ANN model, Pred(tq), and the case solutions, Rt+1, are also
displayed to the user (day 15).

4 Evaluation

In this section, the evaluation of the CBR-fox system is addressed. First, we
explain the dataset used to train the ML model, next, we discuss the validation
and evaluation metrics and, finally, the results are presented.

4.1 Dataset and model

The dataset used for the evaluation of CBR-fox consists of meteorological vari-
ables recorded by the Mexican National Water Council (Comisión Nacional del
Agua, CONAGUA) ground station located at the city of Mérida; among the data
provided, the following variables were found: temperature (T), vapor pressure
(P), and relative humidity (H). Daily records were obtained from January 1,
2000, to September 30, 2018.

A recurrent neural network (RNN) using long short-term memory (LSTM)
cells was trained over the dataset of time windows and weather labels. 70% of the
dataset was used during training, while the remaining 30% was used for testing
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purposes. The dataset is then divided into cases (time windows) with w = 14,
obtaining explanation cases with 14 days of weather evolution.

4.2 Methodology

The evaluation consists of leave-one-out cross-validation for each case (time win-
dow) where the k-nearest neighbors (explanation cases) are obtained using any
of the similarity metrics presented in Section 3.1.

The quality of each explanation case is obtained by comparing the original
query time series with the Euclidean distance. This distance is computed for all
the timestamps in [t − w, t] and then averaged to obtain the global distance to
the query. This evaluation metric aims to resemble the perception of the user re-
garding the geometrical difference between the query and the explanation cases.
In the case of several explanation cases (k > 1) the values for each timestamp
within the time window are averaged, and this average is then compared to the
query. This process is performed for the three time series (temperature, vapor
pressure, and relative humidity) that compose the explanation case. The global
quality of the explanation case is then computed as the root sum squared (RSS)
of the three distances to the query.

Additionally, the diversity of the explanation cases is evaluated through a
dispersion metric that estimates the distance between the timestamps of the re-
trieved explanation cases. Following the example in Figure 3, diverse explanation
cases will be scattered along the time series, whereas maximally similar cases
without diversity will correspond to nearby timestamps. The dispersion metric
used to measure the diversity is the average of the mutual differences between
the timestamps of the k retrieved examples.

4.3 Results

Performance results are displayed in Figure 6. This figure shows the quality of
the explanation cases obtained through the similarity metrics available in CBR-
fox for different values of k and both reuse strategies. The first conclusion is that
there are no remarkable differences between the simple and weighted averages.
This indicates that similarity values are very homogeneous without irregular
differences between neighbors.

Globally, the best metric is Edit Distance For Real Penalty (EDRP) for an
only explanation example. However, the most useful metric is the Combined Cor-
relation Index (CCI) when presenting two or three explanation examples to the
user. From more than five explanation cases, all the metrics perform similarly,
except Longest Common Subsequence (LCS), which always obtains unsatisfac-
tory results. Further research is needed to gain insight about the deteriorating
behavior of CCI as the value k increases.

The evaluation of the diversity of the retrieved explanation cases is presented
in Figure 7. Each plot in the figure corresponds to a similarity metric and com-
pares the average of the mutual differences between the timestamps of the k
retrieved examples between the smoothed similarity signal and the original one.
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Fig. 6: Line plot showing the quality of the explanation cases obtained through
the similarity metrics for different values of k and both reuse strategies: simple
average (top), weighted average (bottom).

As expected, diversity rises when the number of explanation cases presented to
the user increases.

5 Conclusions

The rise of the IoT and its combination with AI (AIoT and IoE) has led to a
wide range of systems based on analyzing time series corresponding to sensors’
readings. These systems are primarily based on ML forecasting models such as
ANNs due to their higher performance. However, these models lack enough trans-
parency to let users understand the reasons for a given prediction. Here, CBR
is a proven solution to twin the ML forecasting model and provide transparency
by means of explanation cases.
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Fig. 7: Line plots comparing the diversity of the original and smoothed similarity
signals for the most relevant metrics.

In this paper, we present CBR-fox, a post-hoc sliding-window explanation-
by-example method that enables the explanation of black-box forecasting models
using CBR. The major novelty of this method is to consider the similarity values
between the query and each explanation case as a signal. This signal results from
applying well-established similarity metrics to a case base generated by a sliding-
window method that obtains a sequence of partially overlapping methods.

This way, the similarity signal can be processed to foster diversity in the
explanation cases presented to the user. The application of noise removal filters,
such as the HP and low-pass filters, avoids maximally similar cases that may
overlap or represent a local slice of the source time series.

Additionally, we have presented a novel time series similarity metric –the
Combined Correlation Index– designed explicitly for retrieving explanation ex-
amples as it is based on the comparison of shape and distance. This metric
is experimentally compared to a wide range of established similarity metrics,
achieving very high performance. This evaluation in the weather forecasting do-
main also highlights the impact of the proposed method regarding the diversity
of the retrieved explanation examples.

This research opens many lines of future work. First, we will analyze the
behavior of CBR-fox when reducing the overlapping of the generated cases by
adding a step in the sliding window process. Additional evaluation metrics are
also required to ensure the appropriateness of each similarity metric, which
should be evaluated in further domains. This may lead to classifying the simi-
larity metric according to their appropriateness to a concrete IoT domain.

The source code of CBR-fox and the dataset used for the evaluation presented
in this paper are available at https://github.com/aaaimx/CBR-fox.
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