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Abstract. Survival analysis is a field of statistics specialized in making predic-
tions about the survival length of patients, even though it can be applied to the 
prediction of any future event. It is routinely used in medical research to stratify 
patients in groups based on risk, such as high-risk groups and low-risk groups, 
and has paramount important in patient stratification and treatment. Recently, 
deep neural networks (DNNs) have raised considerable attention for survival 
analysis because of their non-linear nature and their excellent ability to predict 
survival, in comparison to statistical methods. In this domain, case-based survival 
methods have started to by applied as well, with some success. It is therefore 
interesting to study how to synergistically combine the two for improved perfor-
mance for several reasons. From the case-based reasoning standpoint, the deep 
neural network can detect deep similarity between cases with a time-to-event 
structure and from the DNN standpoint, case-based reasoning can provide the 
glass-box approach that remedies the “black box” label attached to them. In this 
study, we propose a synergy between case-based reasoning and Long Short-Term 
Memory (LSTM) model for survival prediction in oncology. In this deep survival 
model network, the total loss function combines four different factors and uses 
an adaptive weights approach to combine the four loss terms. The network learns 
a prototype layer during training which naturally comes with an explanation for 
each prediction. This study employs cross-validation and the concordance index 
for assessing the survival prediction performance and demonstrate on two cancer 
methylation data sets that the developed approach is effective. 

Keywords: Survival Analysis, Deep Network, Case-based Reasoning, Objec-
tive Loss, Explainable Model. 

1 Introduction  

Cancer is the most common disease in the world. Because genetic factors have been 
associated with this disease with a preponderance of evidence, genomic data are key to 
understand the complex biological mechanisms of cancer patient survival. This ap-
proach could lead to the development of new treatments for patients and improved sur-
vival predictions. An easily measurable genomic factor is the DNA methylation pro-
cess. DNA methylation levels exhibit differential expressions in a variety of tissues 
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[27]. One goal of cancer studies refers to gaining the ability to identify prediction-re-
lated elements to determine the survival length of a patient, thereby allowing clinical 
personnel to perform early treatment decision-making. Prediction-related disease sig-
natures are critical to split cases between risk groups for personalized cancer manage-
ment, which could avoid either overtreatment or under treatment. For instance, cases 
classified into the high-risk group may benefit from closer follow-up, more aggressive 
therapies, and advanced care planning [30]. Consequently, to explore the utility of DNA 
methylation data for cancer diagnosis, it is very useful to analyze DNA methylation of 
tumors from cases with cancers to identify potential cancer-specific survival risk. 

In case-based reasoning (CBR), similarity assessment can be complex, in particular 
in domains involving temporal or sequential data. In bioinformatics in particular, most 
biological data are high dimensional and with low-sample size. To overcome the high-
dimensional feature space and low-sample size problem in bioinformatics, dimension-
ality reduction techniques are often used to reduce the dimension of the input data. In 
particular, deep feature selection was developed to identify discriminative features in 
deep learning models [7]. This problem has been well studied in deep learning, where 
model overfitting often occurs because gradients tend to have high variance in back-
propagation. 

In domains involving temporal or sequential data, deep learning models can be ad-
vantageous to perform similarity assessment. As a matter of fact, deep Learning tech-
niques can be used directly in survival analysis to learn the hazard function and create 
deep models [1]. However, if the input and output are understood, the processing that 
occurs in-between is obscure, so that a black- box effect in DNNs is alluded to. The 
large number of parameters and the typical non-linearity of the activation functions are 
the main reasons why this task is practically impossible. Nevertheless, interpretable 
approaches are necessary in medicine because users are ultimately responsible for their 
clinical decisions and therefore need to make informed decisions [19].  In survival anal-
ysis, the model interpretability is more of a concern than simply predicting patient sur-
vival with high accuracy. Therefore, the ability to provide explicit model interpretation 
in deep neural networks remains highly desirable in survival analysis. 

In this study, we create a synergistic system between case-based reasoning and deep 
learning for survival analysis. The contribution of deep learning is two-fold. Firstly, an 
autoencoder reduces the dimensionality of the input space. Our purpose for using the 
encoder layers is to reduce the dimensionality of the original input features. Secondly, 
a Long-Short Term Memory (LSTM) learns the similarity between input cases and test 
cases. The survival prediction architecture is capable of explaining its own reasoning 
process. The learned model naturally provides explanations for each prediction, and 
these explanations are faithful to what the network is actually computing. An architec-
ture is used to encode its own explanation in contrast to creating an explanation for a 
previously trained black-box model. We create a prototype layer, where each prototype 
corresponds to a case, to store the weight vector following the encoded input, and to 
receive the output from the encoder layers. The prototype layer, inspired by case-based 
reasoning, utilizes the strategy of the nearest distance retrieval in case-based reasoning 
(CBR) to provide a useful insight into the inner workings of the deep network. We can 
use this prototype layer to explain the input data features. 
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The contributions of this paper are the following: 
1) The synergy between case-based reasoning and deep learning is explored in the 

context of survival analysis, which is a very different machine learning task 
from classification or prediction. Very few CBR systems have tackled this task. 

2) The deep learning architecture used, LSTM, has not been used in synergy with 
CBR, to the best of our knowledge. LSTM belongs to the recurrent neural net-
works family and excels in sequence and temporal data analysis. 

3) The application to methylation data in oncology has been rarely studied from a 
CBR standpoint. However, it is of growing importance in bioinformatics, in 
which this type of data has been shown to better classify and predict many dis-
eases than gene expression alone. 

4) Unlike many approaches to the synergy between CBR and deep learning, the 
proposed system adopts a balanced approach between the two, since the deep 
learning model mostly performs deep similarity learning, taking temporal data 
into account. CBR is not used in the system solely for explainability. 

2 Research Background  

DNA methylation has recently become more prevalent in genetic research in oncology. 
This paper proposes to apply these findings to the study of DNA methylation signatures 
for cancer prognostic survival analysis. Cancer cases can be divided into two categories 
i.e., censored cases and non-censored cases [2]. For censored cases, the death events 
were not observed during the follow-up period, and thus their genuine survival times 
are longer than the recorded data, while for non-censored cases their recorded survival 
times are the exact time from initial diagnosis to event – very often the event is death.  

Several survival analysis approaches have been proposed in the literature. LASSO 
method [18][25] applies the lasso feature selection method for selecting the parts asso-
ciated with cancer prediction. Random Survival Forests (RSF) [10] calculates a random 
forest with the log-rank test as the splitting standard. Though much progress has been 
made using above approaches, Yet the predicting performance of the previously pro-
posed approaches remains far from satisfying, and room remains for subsequent ad-
vancement. 

The deep learning models overcome many of the restrictions of Cox-based models 
like the proportionality assumption. DeepSurv [13] was developed with a cutting-edge 
deep neural network. It is based on the Cox proportional hazards method associated 
with a deep neural network to perform a prediction of time-to-event and facilitate risk 
stratification with the goal of enabling treatment efficacy by providing individual treat-
ment suggestions [14]. However, DeepSurv lacked interpretability. It was urgent to 
propose interpretable nonlinear models for survival prediction. 
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3 Related Work 

3.1 Case-based reasoning 

Case-based reasoning (CBR) is a method of reasoning based on analogy. Its fundamen-
tal idea is to reuse similar previous experiences in order to solve new problems. The 
CBR methods have in common the following processes: retrieve, reuse, revise, and 
retain. The most used case retrieval strategy is the nearest neighbor strategy or k-nearest 
neighbors algorithm (kNN). kNN is one of the most explainable algorithms and belongs 
to instance-based learners, for which decisions are made by similarity between a new 
case and solved retrieved cases, which can serve as explanations for a system recom-
mendation. CBR within the domain of microarray analysis is mostly unexplored, espe-
cially for epigenetic data. The primary foundation for CBR is its ability to consistently 
update from new cases, and to adapt prior solutions to a new problem. Within microar-
ray analysis, however, problems exist that render updating and adaptation particularly 
difficult. The first problem is the high dimensionality with few samples. There are thou-
sands of features for a small subset of samples (specifically tens of thousands for the 
standard chipset used in DNA methylation), and these samples are often imbalanced 
between cases and controls. Therefore, little work has been done so far in genetic sur-
vival analysis with case-based reasoning, We can cite Karmen et al., who calculate 
similarity based on survival functions [12]. Bartlett et al. (2021) consider clinical co-
variates when retrieving genetic cases for case-based survival prediction [2]. 

3.2 Synergies between Deep Learning and CBR 

A number of approaches have been proposed to combine case-based reasoning and deep 
learning. Approaches range from resorting to deep learning in subtasks, to resorting to 
CBR to make deep learning more explainable. In the former approach, for example, 
several systems use deep learning for some tasks within a case-based reasoning archi-
tecture. Eisenstadt et al. classify design cases from labels to select most relevant cases 
during retrieval [8]. In the latter approach, deep learning systems mostly resort to CBR 
to provide explanations of their reasoning processes (XAI) [22, 23, 5]. Li et al. construct 
a prototype layer by adding an autoencoder to deep convolutional networks [17]. Their 
application processed image data, for which convolutional neural networks are partic-
ularly adapted. By contrast, our approach fits clinical and multi-omics data, using 
LSTM as the main deep learning method, and performs survival prediction tasks. Our 
approach can also tackle classical classification and regression tasks since LSTM can 
be adjusted for that purpose as well, even though they excel particularly on data having 
a serial form, such as time series and other forms of sequences. Several deep learning 
systems learn prototypes for grouping input cases and explaining deep learning results 
[15, 16, 11]. Our system uses deep learning methods to encode each case in a prototype, 
not for grouping several cases into a prototype. The prototype provides a representation 
of a case after encoding features. Although our system could learn prototypes for group-
ing, we prefer to keep each case separate in the current system.  
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3.3 Survival Analysis 

Survival analysis is considered as a specific machine learning task predicting a time to 
event based on incomplete data, which refers to a mix of censored and uncensored data. 
Although it performs a prediction into the future, it is quite different from forecasting 
as well as from classification or prediction. Very specific machine learning models, 
mostly from statistics, have been applied to this task with the goal of evaluating the risk 
of patients into risk categories to reach an event in the future. Cox proportional hazard 
model [18] is one of the most popular survival prediction models. Recently, based on 
the Cox model, several regularization approaches have been proposed in the literature. 
The Least Absolute Shrinkage and Selection Operator COX model (LASSO-COX) 
[ 2 4 ,  2 5 ,  2 8 ]  applies the lasso feature selection method for selecting parts associ-
ated with carcinoma prediction. Random survival forests (RSF) [10] calculates a ran-
dom forest with the log-rank test as the splitting standard. It determines the cumulative 
hazards of the leaf nodes while averaging them over the totality of elements. Cox re-
gression with neural networks by a one hidden layer multilayer perceptron (MLP) [29] 
was proposed to replace the linear predictor of the Cox model. Some novel networks 
were suggested to be capable of outperforming typical Cox models [1]. DeepSurv [13, 
14] refers to a deep Cox proportional hazards neural network as well as a survival 
approach to model interacting processes of a case’s covariates and treatment modalities 
for providing individual treatment suggestions. DeepSurv is developed upon Cox pro-
portional assumption with a cutting-edge deep neural network. MTLSA [17] is a re-
cently proposed model which regards survival analysis to be a multi-task learning 
issue. Following in this trend, Bichindaritz et al. [4] proposed an adaptive multi-task 
learning method, which combines the Cox loss task with the ordinal loss task, for sur-
vival prediction of breast cancer patients using multi-modal learning to integrate gene 
expression and methylation data instead of performing survival analysis on each feature 
data set. However, these models lacked interpretability. 

4 Methods 

In survival analysis, prediction of the time duration until a certain event occurs is the 
goal and the death of a cancer case is the event of interest in this study. We propose a 
synergy between CBR and deep learning to achieve this goal. The model learning pro-
cess, highlighted in its architecture (see Fig. 1), comprises three stages: prototype learn-
ing to encode each case into a compact representation, similarity learning through 
LSTM model training, and survival prediction. The trained model then can be applied 
to new input cases, also referred to as test cases, for survival prediction (see Fig. 2). 

4.1 Autoencoder 

We use an autoencoder (an encoder and a decoder) with the leaky ReLU activation 
function in all autoencoder layers.  
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The autoencoder is used to reduce the dimensionality of the input and to learn useful 
features for prediction; then the encoded input is used to produce a deep Cox model 
through the prototype layer. The prototype layer receives the output from the encoder. 
Because the prototype layer output vectors live in the same space as the encoded inputs, 
we can feed these vectors into the decoder and visualize the learned custom network 
throughout the training process. In case-based reasoning, to determine the solution of 
new problems, the process of case retrieval uses a similarity function to find some sim-
ilar problems and their solutions from the historical case base. Similarity functions are 
generally obtained by calculating their distances in the feature space. In this system, we 
minimize the distance between the output and input of the prototype layer during the 
model iteration training. The output of the prototype layer can then be used to interpret 
the input data features. This property can interpret how the network reaches its predic-
tions and visualize the learning process.  

In fact, the purpose of creating the prototype layer is to obtain a dimensionality re-
duction vector of the original input by autonomously training a model to represent and 
explain the original input. For each training sample, the linear expression of each fea-
ture was calculated and used to construct one prototypical case. Each proto-
type case would then represent typical DNA methylation patterns present in different 
samples. The Euclidean distance between each encoder from the case base and its re-
spective prototype is used to determine how similar the prototype is to its own. This 
will appropriately determine how well the case fits a collection of unsolved cases dur-
ing the prediction. 

 

 
Fig. 1.  Illustration of the proposed model training framework 

4.2 biLSTM 

A bidirectional Long Short-Term Memory (biLSTM) [9] is then trained as the last out-
put layer. 
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In this deep survival model network, the total loss function consists of four terms: 
the negative log partial likelihood function of the Cox model, the autoencoder loss, and 
two required distances. These distances ensure that every feature vector in the original 
input looks like at least one of the prototype layer feature vectors and that every proto-
type layer feature vector looks like at least one of the feature vectors in the original 
input. We use an adaptive weights approach to combine the four loss terms. The net-
work that the prototype layer learns during training naturally comes with an explanation 
for each prediction.  

The negative log partial likelihood function of the Cox hazard model is defined as 
follows by Sy and Taylor [5]: 

  𝐿𝐿𝑍𝑍(𝜃𝜃) = −∑ 𝛿𝛿𝑖𝑖𝑛𝑛
𝑖𝑖=1 �𝜃𝜃𝑇𝑇𝑥𝑥𝑖𝑖 − 𝑙𝑙𝑙𝑙𝑙𝑙 ∑ 𝑒𝑒𝑥𝑥𝑒𝑒( 𝜃𝜃𝑇𝑇𝑥𝑥𝑗𝑗)𝑗𝑗∈𝑅𝑅(𝑡𝑡𝑖𝑖) �                         (1)  

where 1 2( , , , )nx x x x= ⋅⋅ ⋅  corresponds to the covariate variable of dimensionality n, iδ  is 
a binary value indicating whether the event happened or not, and ( )iR t denotes the set of 
all individuals at risk at time it , which represents the set of cases that are still at risk 
before time it . 𝜃𝜃𝑇𝑇𝑥𝑥𝑖𝑖 is called the risk (or survival) function, in which 𝜃𝜃 can be esti-
mated by minimizing its corresponding negative log partial likelihood function; n de-
notes the number of patients. 

The autoencoder loss uses the squared L2 distance between the original and recon-
structed input for penalizing the autoencoder’s reconstruction error. We denote this loss 
as: 

𝐿𝐿𝐴𝐴𝐴𝐴 = 1
𝑛𝑛
∑ ‖(𝑙𝑙 ∘ 𝑓𝑓)(𝑥𝑥𝑖𝑖) − 𝑥𝑥𝑖𝑖‖22𝑛𝑛
𝑖𝑖=1                                                         (2) 

where (𝑙𝑙 ∘ 𝑓𝑓)(𝑥𝑥𝑖𝑖) is the decoder network reconstructed input. 
The two required distances loss, which are two interpretability regularization terms, 

are formulated as follows: 

𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷1 = 1
𝑚𝑚
∑ min

𝑖𝑖∈[1,𝑛𝑛]
�𝑒𝑒𝑗𝑗 − 𝑓𝑓(𝑥𝑥𝑖𝑖)�2

2𝑚𝑚
𝑗𝑗=1                                                  (3)  

𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷2 = 1
𝑛𝑛
∑ min

𝑗𝑗∈[1,𝑚𝑚]
�𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑒𝑒𝑗𝑗�

2

2𝑛𝑛
𝑖𝑖=1                                                     (4)  

where 𝑓𝑓(𝑥𝑥𝑖𝑖) is the encoded input vector, 𝑒𝑒𝑖𝑖  is the vector learned from the prototype 
layer. The prototype layer p computes the squared L2 distance between the encoded 
input 𝑓𝑓(𝑥𝑥𝑖𝑖) and each of the prototype layer vectors. Minimization of LDIS1 will make 
each prototype vector as close as possible to at least one training case. The minimization 
of LDIS2 will make each encoded training example as close as possible to some prototype 
vector. It is worth noting that the purpose of minimizing the distances LDIS2 is to find 
the most similar case to the test case in the prototype outputs of the training set. This 
implements the nearest neighbor strategy method from case-based reasoning in the deep 
network. We use the two terms LDIS1 and LDIS2 in our cost function to illustrate the in-
terpretability. The network chooses prototypes that fully represent the input space, and 
some of the prototypes tend to be similar to each other. Intuitively, LDIS1 approximates 
each prototype to a potential training example, making the decoded prototype realistic, 
while LDIS2 forces each training example to find a close prototype in the latent space, 
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thus encouraging the prototypes to spread out over the entire latent space and to be 
distinct from each other. In the latent space, they are different from each other. 

By combining the above 4 loss terms, the objective loss function can be formulated 
as follows: 

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜆𝜆1𝐿𝐿𝑍𝑍 + 𝜆𝜆2𝐿𝐿𝐴𝐴𝐴𝐴 + 𝜆𝜆3𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷1 + 𝜆𝜆4𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷2                                      (5) 

where 𝜆𝜆𝑖𝑖  (𝑖𝑖 = 1,2,3,4)  is the regularization weight for the regularization terms respec-
tively. Instead of fixing the weights, we use these weights as trainable parameters in the 
deep network for adaptive optimization [3]. 

This network architecture, unlike traditional case-based learning methods, automat-
ically learns useful features. For methylated feature data, those methods (e.g., k-nearest 
neighbors) tend to perform poorly if we use the raw input space or use a hand-crafted 
feature space for predictions. We feed the sequence vectors into the decoder and train 
them throughout learned variables during the process. This approach will enable the 
system to explain how the network reaches its predictions and will show the learning 
process of the input variables without post-hoc analysis.  

 

 
Fig. 2.  Case-based reasoning for survival analysis 

4.3 Survival Prediction 

The survival prediction of the system can then be provided for any test case, associated 
with one input case corresponding to the nearest prototype activated by the biLSTM 
layer (see Fig. 2). Since the output of the prototype layer is generated during the itera-
tive optimization of the model, it represents the characteristics of the training set. Min-
imizing the distance between the encoder output and prototype output means finding 
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the nearest neighbor to this test case in the training set. If the minimum prototype dis-
tance is found, it means that one prototype case can represent the encoder output of this 
test case. This method exactly utilizes the strategy of the nearest distance retrieval in 
case-based reasoning. . For each training sample, the linear expression of each feature 
was calculated and used to construct one prototypical case. Each prototype case would 
then represent typical DNA methylation patterns present in a sample. The Euclidean 
distance between each encoder from the case base and its respective prototype is used 
to determine how similar the prototype is to its own. This will appropriately determine 
how well the case fits a collection of unsolved cases during the prediction. The ability 
to trace the nearest neighbor, according to the deep similarity calculated by the model, 
adds to the transparency and explainability of the system. 

5 Results and Discussions 

5.1 Benchmark Datasets 

In this section, we assess the performance of the proposed method and carry out exper-
iments on two cancer DNA methylation datasets through ten-fold cross validation. We 
selected Glioma cohort (GBMLGG) cancer and Pan-kidney cohort (KIPAN) cancer, 
two datasets from Firehose [4]. The GBMLGG datasets include 1129 samples for clin-
ical data and 20116 gene-level features for DNA methylation data. The KIPAN datasets 
contain 973 samples and 20533 DNA methylation features. In our case, we will also 
use the clinical data. Two clinical variables are used: survival status and survival time. 
In survival status, ‘Deceased’ represents the patient deceased, ‘Living’ means that 
he/she is living at the time of the last follow-up. The survival time represents the num-
ber of days between diagnosis and date of death or last follow-up. This study removes 
cases with survival days that were not recorded or negative. For these reasons, this study 
extracts 650 samples for GBMLGG data and 654 samples for KIPAN data that have 
both DNA methylation data and clinical data respectively after merging and filtering. 

Table 1. Gene and clinical characteristics in two cancers. 

Characteristics  GBMLGG  KIPAN 
Patient no. 650 654 
Gene no.   
   DNA Methylation 20116 20533 
   Selected features 
Survival status 586 749 

 Living 434 500 
     Deceased 216 154 
Follow up (days) 1-481 3-5925 

 
The high-dimension and low-sample size methylation data posed a challenge for ob-

taining sufficient statistical power. To accurately describe local features and all the lev-
els (high & low) in feature representation of cancer samples, we use a multivariate Cox 
regression preprocess to extract the biomarkers. We calculate the log rank of each gene 
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feature and select the gene features whose p-value are less than 0.01. Thus, we can get 
the preliminarily reduced features. For GBMLGG data, by using this method, we ex-
tract 586 methylation features. Similarly, we can obtain 749 methylation features for 
KIPAN data. Table 1 shows the Gene and clinical characteristics for the selected cases.  

As is classical in survival analysis, we use Concordance index (C-index) [21] to as-
sess the performance of the developed approach and other comparable methods. C-
index is the probability that the predicted survival time of a random pair of individuals 
is in the same order as their actual survival time. It is very useful for evaluating propor-
tional hazard models. 

5.2 Convergence Analysis 

To investigate the convergence of the proposed method, we calculate the corresponding 
loss curves of Eq. 5 on two datasets. Fig. 3 shows the training loss curves of the five 
different loss functions we used concerning the GBMLGG and KIPAN datasets respec-
tively. As shown in Fig. 3, the values of the training objective function loss decrease 
with respect to iterations on both datasets. The four loss terms (LZ, LAE, LDIS1, and LDIS2) 
and the total loss value (Ltotal) combined from them all converge to some stable values 
after a few iterations. Therefore, our proposed optimization algorithm is reliable and 
convergent. 

 
(a)                                                                       (b) 

Fig. 3. The training loss curves using the proposed methods on two datasets. (a) the curves of 
training losses on GBMLGG dataset; (b) the curves of training losses on KIPAN dataset. 

Let us investigate the autoencoder loss and the two interpretability prototype dis-
tance terms for a test case.  We randomly select a test case from the GBMLGG and 
KIPAN datasets respectively for the experiments. Fig. 3 shows the curves of three dis-
tance terms (LAE, LDIS1, and LDIS2) during the prediction iterations for one test case of 
each of the two datasets. In Fig. 3 (a), the values (LAE, LDIS1, and LDIS2) are changed to 
(0.01671, 2.82664, and 0.02032) when 1000 epochs are completed. As also can be seen 
from Fig. 3 (b), the three values will converge to (0.005529, 2.0152, and 0.07098).  

Obviously, by searching for the smallest distance LDIS2, for GBMLGG, we can find 
the most similar case No. 356 in the training set to the test case No. 62. This means that 
we can use the characteristics of the known cases in the case base to explain the un-
solved cases. Similarly, for KIPAN, we can find the most similar case No. 266 in the 
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training set to match the test case No. 319.  
From Fig. 4, we can find that the curve of LAE (purple) and the curve of LDIS2 (pink) 

both converge to almost the same value when the model converges after 1000 epochs. 
The results of the two different datasets are consistent. The autoencoder loss LAE is the 
distance between the original and reconstructed input. We use the autoencoder to create 
a latent low-dimensional space. The smaller the distance between the decoder and the 
original input, the more the encoder output can represent the original input. The inter-
pretability prototype distance LDIS2 means the minimum distance between the encoder 
output and prototype output. When the two distances (LAE and LDIS2) tend to be the 
same, the prototype features will explain the original input data. 

 
(a)                                                                       (b) 

Fig. 4. Three curves of distance terms on two test cases from two datasets. (a) the curves of 
distance terms on one test case in GBMLGG dataset; (b) the curves of distance terms on one test 
case in KIPAN dataset 

As also can be seen from Fig. 4, for the values of LDIS1 and LDIS2, although their 
equations (Eq. 3 and Eq. 4) look similar, they are actually different. Actually, LDIS1 
helps make the prototypes meaningful, and LDIS2 keeps the explanations faithful in forc-
ing the network to use nearby prototypes. 

Table 2. Performance comparison between two models by C-index (higher is better) on two da-
tasets (with standard deviations) 

Models GBMLGG KIPAN 
Prototype  0.7132 (0.0166) 0.7246 (0.0149) 
Without prototype 0.7157 (0.0234) 0.7313 (0.0188) 

 

5.3 Survival prediction Performance and Interpretability 

We compared our model to a network without the explainable parts, in which we re-
moved the autoencoder layers and the prototype layer. We replaced the prototype out-
put vectors with original input vectors (without prototype) as the input for the last out-
put layer directly. Table 2 shows the performance comparison between these two mod-
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els by the measurements of C-index on GBMLGG and KIPAN datasets. As demon-
strated in Table 2, compared with no prototype model performance, the C-index of the 
prototype model is only 0.25% and 0.67% lower on GBMLGG and KIPAN datasets 
respectively. From Table 2, the result illustrates that we do not sacrifice much C-index 
when including the interpretability elements into the network. 

5.4 Comparison with Different Survival Prediction Methods  

To explore the effectiveness of the proposed method, we compare the developed 
method with three existing machine learning survival prediction approaches: LASSO, 
RSF, and DeepSurv. For the sake of fairness, this part of the study runs the same input 
feature set in all cross-validation tests. Table 4 presents the performance comparison 
between the proposed method and the three stated methods by the measurements of the 
C-index on GBMLGG and KIPAN datasets. 

As shown in Table 3, it can be found that our proposed method outperforms all the 
other three methods. Compared with the approaches: LASSO, RSF, and DeepSurv, the 
C-index of the proposed method is improved by 10.97 percent, 12.96 percent, and 5.85 
percent on GBMLGG data; and by 11%, 11.13%, and 3.88% on KIPAN data, respec-
tively. As also can be seen from Table 3, the prognosis power of the deep cox model 
(i.e., DeepSurv) is superior to the other traditional regularized Cox model methods (i.e., 
LASSO and RSF). It is worth mentioning that DeepSurv method uses a linear network, 
but our method outperforms DeepSurv. So, it demonstrates the advantage in survival 
prediction and the efficacy of the proposed method. 

Table 3. Performance comparison among a range of survival prediction approaches by C-index 
(higher is better) on two datasets (with standard deviations) 

Methods GBMLGG KIPAN 
LASSO 0.6035 (0.0141) 0.6146 (0.0246) 
RSF  0.5836 (0.0238) 0.6133 (0.0233) 
DeepSurv 0.6547 (0.0216) 0.6858 (0.0173) 
Proposed Method 0.7132 (0.0166) 0.7246 (0.0149) 

6 Discussion 

In this study, we developed a synergistic machine learning combining CBR, an autoen-
coder, and a LSTM prediction model for survival analysis. In comparison with state-
of-the-art survival analysis models, the proposed model performs better in predicting 
survival, while providing transparency and explainability through a prototype layer 
where each prototype can be traced back to a training case. This approach provides 
same transparency as case-based reasoning by tracing which training inputs have influ-
enced the model behavior. 
 In a previous study, Bartlett et al. [2] used solely case-based reasoning, without the 
synergy with deep learning used in this paper for autoencoding and similarity assess-
ment. The results of this study are not comparable with the current study because the 
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datasets were not the same: breast cancer in [2] and glioma and pan-kidney in the cur-
rent study.  
 We plan in the future to compare the two systems on the same three datasets, both 
on the entire feature set and with same feature selection methods. 

7 Conclusions 

In this study, we developed a synergistic system between CBR, autoencoding, and 
LSTM for survival analysis in oncology. This system provides an explainable survival 
analysis framework of cancer patients, which uses an autoencoder network to recon-
struct features of the training input and uses a prototype layer to store the weight vector 
following the encoded input. This deep survival prediction architecture can explain its 
own reasoning process and can provide explanations for each prediction, based on re-
trieved cases. We performed ten-fold cross-validation experiments on the DNA meth-
ylation data from two cancer types (GBMLGG and KIPAN). We have compared the 
performance of the proposed method with that of three other state-of-the-art existing 
methods (i.e., LASSO, RSF, and DeepSurv) through the performance measurement of 
C-index. The test results demonstrate that the survival prediction ability of the proposed 
method is better than that of the other three reported methods. We also investigate the 
convergence of the proposed method. The prototype layer can provide useful insight 
into the inner workings of the network. This method can partially trace the path of sur-
vival time prediction for a new observation to a previous case. This approach can par-
tially trace the path of changes of the original input data in the deep network for survival 
prediction. Future plans include a comparison with CBR for survival analysis without 
LSTM, an evaluation of the interpretability of this model, and the addition of adaptation 
to the system’s capability. The current approach has broader applications in the entire 
field of survival analysis as well as time series and sequence prediction in any domain. 
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