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Abstract. The knowledge containers perspective on CBR suggests that
bias and fairness issues can be addressed in a number of different ways. In
this paper we assess the use of case-base maintenance to ensure fairness.
We present FairCBM, a strategy for removing cases that are causing
biased classifications. We evaluate this strategy on five different datasets
and show that it is effective for ensuring fairness with minimal impact on
classification accuracy. FairCBM is also evaluated against an alternative
metric learning strategy (similarity knowledge container); the evaluation
shows that both strategies are equally effective. FairCBM has the benefit
that it is quite transparent; by comparison the metric learning strategy
is more opaque.

1 Introduction

Algorithmic bias and fairness has become a major concern in machine learning re-
search in recent years and case-based reasoning (CBR) is not an exception in this
regard. Recently Blanzeisky et al. [6] presented FairRet a metric learning strat-
egy to help ensure fairness in CBR. From a knowledge containers perspective,
this is just one way that bias and fairness can be addressed in CBR. Richter’s
knowledge container perspective on CBR includes four knowledge containers,
vocabulary, case-base, similarity and adaptation [20]. Whereas metric learning
addresses the similarity knowledge container, in this paper we consider tackling
bias in the case-base itself.

Addressing fairness by removing cases causing bias rather than through
tweaking the similarity metric has some advantages. There is merit in removing
cases that are causing problems and this is quite transparent compared with
adjustments to the similarity metric that can be quite opaque. CBR research on
case-base maintenance (CBM) has a long history, the relevant aspects of which
are reviewed in section 2.2.

Our algorithm for removing cases causing bias is presented in section 3. The
basic idea is to identify the cases that cause biased predictions; these can be
ranked by the number of biased predictions they cause. Then cases above a
threshold count can be removed. This threshold is set through a cross-validation
process on the training data.



2 Blanzeisky & Cunningham

An evaluation of this algorithm on five datasets is presented in section 4.
The relevant background research is reviewed in section 2 and the paper finishes
with some conclusions and discussion of future work in section 5.

2 Related Research

This research is informed by other work relating to bias in machine learning
(ML) and case-base manitenance in CBR. The relevant work in these areas is
discussed in the following subsections.

2.1 Bias in ML

ML models play an increasingly important role in making decisions that impact
people’s lives, including those related to employment, credit, housing, and crim-
inal justice. The issue of ensuring fairness in ML models is critical, as biased or
unfair models can perpetuate existing inequalities and discrimination, with mi-
nority groups being particularly vulnerable. Several measures of unfairness have
been proposed in recent years, each emphasizing different aspects of fairness [8].
In general, an ML model is considered ‘fair’ if it is not inclined to award desir-
able outcomes Y = 1 (e.g., loan approval/job offers) preferentially to one side
of a protected category S = 0 (e.g. female/protected group). Disparate Impact
(DIS) is one of the accepted measures of unfairness [12]:

DIS ←
P [Ŷ = 1|S = 0]

P [Ŷ = 1|S = 1]
< τ (1)

It is the ratio of desirable outcomes Ŷ predicted for the protected minority
S = 0 compared with that for the majority S = 1. However, this measure is
independent of what is actually in the training data.

In this paper, we are particularly interested in the bias introduced by the
algorithms themselves, usually referred to as underestimation. Underestimation
bias arises when the distribution of predictions from an algorithm is not in
line with the true underlying distribution of the data. This happens when the
algorithm focuses on strong signals in the data thereby missing more subtle
phenomena. Hence, the classifier accentuates bias that might be present in the
data and underestimates the infrequent outcome for the minority group. An
underestimation score (USS) in line with DIS (see Equation 1) that compares
predicted and actual outcomes for the protected minority would be [5]:

USS=0 ←
P [Ŷ = 1|S = 0]

P [Y = 1|S = 0]
(2)

This is the ratio of desirable outcomes predicted by the classifier for the protected
group compared with what is actually present in the data [5]. If USS=0 < 1 the
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classifier is under-predicting desirable outcomes for the minority. It is worth not-
ing that when USS=0 = 1 the classifier may still be biased against the minority
group; it is faithful to the data but there may still be a poor DIS score.

An alternative underestimation score that considers divergences between
overall actual and predicted distributions for all groups S is the underestimation
index (UEI) based on the Hellinger distance [17] :

UEI =

√√√√1−
∑

y,s∈D

√
P [Ŷ = y, S = s]× P [Y = y, S = s] (3)

Here y and s are the possible values of Y and S respectively. This Hellinger
distance is preferred to KL-divergence because it is bounded in the range [0,1]
and KL-divergence has the potential to be infinite. UEI = 0 indicates that there
is no difference between the probability distribution of the training samples and
the prediction made by a classifier (no underestimation). [17] refer to underesti-
mation as the state in which a learned model is not fully converged due to the
finiteness of the size of a training dataset - i.e., the learned classifier may lead
to more unfair determinations than that observed in the training sample distri-
bution. Although this notion is useful when quantifying the extent to which a
model’s prediction deviates from the training samples, it does not directly tell
us how the protected group is doing since it is an aggregate score across all
protected attributes S and outcomes Y .

Bias mitigation strategies in machine learning (ML) can be broadly classified
into three categories depending on the stage at which fairness measures are ap-
plied. These stages include the pre-processing, in-processing, and post-processing
steps, each of which has its unique set of approaches towards ensuring fairness.

Pre-processing Techniques: In this category, the focus is on the data,
which is often the root of bias issues. The strategies involve transforming the
dataset to correct imbalances or unrepresentative aspects before feeding it into
the ML model. A variety of methods have been proposed, including disparate
impact repair strategies as proposed by Feldman et al. [12], and probabilistic
mappings designed to maintain individual and group fairness, as suggested by
Dwork et al [11]. Other techniques involve the re-labeling or perturbation of
data to eliminate undesirable biases [16, 24]. Our proposed strategy, FairCBM,
falls under this category, addressing underestimation bias by removing cases
from the training data that contribute to biased classifications.

In-processing Techniques: These approaches aim to reduce bias during
the model-building process by adjusting the algorithm’s objective function to
account for fairness measures [17, 22]. This is often achieved by enforcing a fair-
ness constraint into the algorithm’s optimization function, thereby transforming
algorithmic bias into a multi-objective optimization problem (MOOP) [19, 2, 22,
13, 4]. Some strategies for handling the non-convex optimization problem that
arises include leveraging recent advances in convex-concave programming or us-
ing a majorization-minimization procedure [23]. Other specific strategies include
modifying decision trees’ splitting criteria and pruning strategies [1] or adding
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a latent variable representing the unbiased label to the Bayesian model [7]. The
FairRet method proposed by Blanzeisky et al. [6] also belongs to this category.
It aims to correct underestimation in case-based reasoning (CBR) systems by
including underestimation as an additional criterion in the ML optimization
process.

Post-processing Techniques: The final category acknowledges that the
ML model’s output might be biased towards specific subgroups within the pro-
tected attribute. To mitigate this, transformations are applied to the model’s
output to ensure fairness, such as setting different thresholds for different sub-
groups [9].

Although pre- and post-processing techniques can effectively mitigate bias
without explicitly modifying the ML optimization process, they may have legal
implications and reduce the model’s interpretability [8]. Despite the challenges,
these approaches, along with in-processing methods, continue to play a crucial
role in addressing algorithmic bias and fostering fairness in ML.

2.2 Case-Base Maintenance

As pointed out in the IJCAI 2018 review paper by Juarez et al. [15] Case-Base
Maintenance has a long history dating back to the Condensed Nearest Neighbor
paper by Hart in 1968 [14]. There can be two motivations for CBM, to improve
the efficiency of the retrieval process by removing redundant cases [3] or to
improve the competence of the system by removing noisy cases [10].

Juarez et al. point out that, when the objective is to improve system compe-
tence, the Smyth-Keane-McKenna competence model [21, 18] has stood the test
of time. This competence model is based on two key concepts, the Coverage Set
and the Reachability Set. The Coverage Set (CS) of a case is the set of other
cases that this case can be used to solve. In the same way, the Reachability Set
(RS) of a case is the set of other cases that solve the case in question. In classi-
fication scenarios, solves simply means that one case is an appropriate retrieval
for another, i.e. they are in the nearest neighbor set and have the same class.
These can be expressed formally as follows:

CS(c, C) = {c′ ∈ C | c′ ∈ NN(c, C) ∧ c solves c′} (4)

RS(c, C) = {c′ ∈ C | c ∈ NN(c′, C) ∧ c′ solves c} (5)

where C is the case-base and NN(c, C) are the nearest neighbors of c. This
model was extended by Delany and Cunningham [10] to include the concept of
a Liability Set (LS), this is the set of cases that are misclassified by c.

LS(c, C) = {c′ ∈ C | c misclassifies c′} (6)

They present an algorithm for deleting cases that are causing misclassifications
and are not required otherwise, i.e. the cases in their CS will be correctly clas-
sified even if they are deleted. Our algorithm for deleting cases that result in
biased classifications is based on this idea - see section 3.
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Fig. 1: These charts illustrates the performance of FairCBM with a naive policy
of deleting all cases that contribute to biased classification (|LSFairCBM| > 0) on
Titanic dataset. The baseline k-NN is biased as we can see from the UEI and
USS=0 scores. The naive FairCBM policy removes 189 (∼ 37%) samples from
the training set. In terms of the USS=0 score, this overshoots slightly on the
training data and very significantly on unseen test data. The UEI scores are
actually worse than the k-NN baseline on train and test data.

3 FairCBM: CBM Strategy to Ensure Fairness

This section introduces FairCBM, a Case-Base Maintenance strategy to address
unfairness in CBR systems. Our focus is on situations where the model under-
predicts desirable outcomes for minority groups (i.e., loan approvals for females),
which can occur when the model prioritizes overall accuracy over fairness. To
combat this, we propose FairCBM as a solution to maintain the case-base and
reduce bias in the model.

FairCBM builds upon the Liability Set (LS) concept introduced by Delaney
and Cunningham [10], but takes a novel approach to tune the amount of case
deletion. Rather than removing cases that result in incorrect classifications, Fair-
CBM identifies and removes cases that contribute to bias. This approach seeks
to establish a case-base that is fair to all groups S while maintaining accuracy.

Focusing only on underestimation for the minority group, FairCBM first con-
structs a liability set LSFairCBM to identify a set of cases that lead to biased
classifications for the minority group:

LSFairCBM(c, C) = {c′ ∈ Q | c misclassifies c′} (7)
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where Q = {q ∈ C | Sq = 0 ∧ Yq = 1}, i.e. Q represents the set of cases in
the minority group having desirable outcomes.

A naive strategy to mitigate underestimation is to delete all cases that con-
tribute to biased classifications (|LSFairCBM| > 0). However, initial experiments
on this strategy showed worsened overall model performance and overshooting
in underestimation (USS=0 > 1) on the test set. Figure 1 clearly illustrates this
phenomenon on the Titanic dataset. Deleting all cases with non-empty LS re-
moves 189 (∼37%) cases. This causes accuracy to drop to 45% from 75% while
USS=0 raises to 4.64 which is above the target of 1.

This is likely due to the limited number of samples for desirable outcomes for
the minority group in the dataset. In most cases, cases that lead to the biased
classification (|LSFairCBM| > 0) are samples for undesirable outcomes for the
minority group (S = 0|Y = 0). Removing all of these cases may result in the
model not learning as effectively for these samples, leading to overestimation.
This highlights the importance of tuning. In the next subsection, we show how a
cross-validation strategy can be used to select an appropriate threshold for the
case deletion process to avoid overshooting.

3.1 Tuning

Given the importance of the case deletion process to the overall model perfor-
mance, determining the appropriate deletion threshold τ is key. Cases causing
at least τ biased classifications will be removed. In a hold-out-test scenario, we
initially divide the initial training dataset into training and validation sets (as
depicted in Figure 2). Following this, we construct the liability set from the
training set employing a leave-one-out method to identify biased classification.
The validation set is then used to set the threshold τ for case deletion. We in-
crementally increase τ where τ ∈ Set(|LSFairCBM(q, C)|) and select τ according

Table 1: The impact of different values of τ on the validation set.

τ Accuracy UEI US S=0
# of

cases deleted

1 0.454 0.572 3.939 142 (46.4%)
2 0.605 0.232 2.576 112 (36.6%)
3 0.722 0.075 1.485 79 (25.8%)
4 0.722 0.067 1.273 45 (14.7%)
5 0.722 0.063 1.030 30 (9.8%)
6 0.702 0.075 0.970 26 (8.5%)
7 0.702 0.088 0.727 19 (6.2%)
8 0.707 0.099 0.636 16 (5.2%)
9 0.727 0.138 0.394 9 (2.9%)
10 0.732 0.154 0.333 10 (1.3%)
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to its performance on the validation set. Upon identifying the optimal τ , we
construct a new liability set, using the leave-one-out approach on the combined
training and validation sets. Subsequently, we carry out the case deletion based
on the optimized τ .

Fig. 2: The strategy for setting the deletion threshold τ . The initial training set
is divided into Train and Validate sets and the validation set is used to find the
optimal value for τ . Then this threshold is used when case deletion is applied in
the initial training set.

An example of this method in operation on the Titanic dataset can be seen
in Table 1. When τ = 1 (all cases with non-empty LS are deleted) 142 cases are
deleted. This reduces accuracy to 45% and we have almost 4-fold overestimation.
By relaxing the threshold we can reduce this overshooting; we see that (τ = 5)
is enough to eliminate underestimation on the validation set so this is selected
as the threshold.

Following the selection of the optimal value τ , we perform the case deletion
process on the initial training data before assessing the models performance on
the hold-out test set. Notably, the validation process for identifying the optimal
value of τ uses only the training data.

Table 2: Summary details of all the datasets used in the experiments. The sen-
sitive group is chosen to have a significant discrepancy between the majority
and minority groups. For consistency, the positive class indicates the minority
outcomes. In some cases, this may require some pre-processing.

Dataset
# of

Instances

# of Attributes

(cat./bin./num.)
Class ratio

(+:-)
Sensitive
group

Target
class

Bike Sharing 731 5:3:2 1:3.55 working day usage
Synthetic 5,000 0:1:2 1:1.48 gender admit
red. Adult 48,842 0:1:6 1:3.03 gender income
Titanic 891 4:1:2 1:1.61 sex survived

Bank Marketing 45,211 6:4:7 1:21.64 age subscription
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(a) Bike Sharing

(b) Synthetic

(c) Adult

(d) Titanic

(e) Bank Marketing

Fig. 3: An evaluation of the remediation strategies on five datasets. It is clear
that both FairCBM and FairRet are effective in mitigating underestimation, but
FairRet takes a bigger hit on the accuracy likely due to optimizing for UEI which
is a broader criterion than USS=0, whereas FairCBM focuses on USS=0 only.
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4 Evaluation

In this section, we evaluate FairCBM on one synthetic and four real-world datasets
commonly used in the fairness literature. In each dataset, we choose a binary
feature as the sensitive attribute S on which the model should be fair. Summary
statistics for these datasets are provided in Table 2.

To illustrate the effectiveness of the proposed strategy, we compare FairCBM
against standard k-NN and FairRet [6] the metric learning strategy to address
underestimation mentioned in section 2. The main results are plotted in Figure
3:

– First it is clear that underestimation is an issue when standard k-NN is
used. This is evident from the high UEI and low USS=0 scores. This is
not surprising since these models are optimized solely on accuracy, without
consideration for how the inaccuracies distribute.

– Secondly, we can see that FairRet is effective in fixing underestimation, as
measured by USS=0 and UEI, compared to standard k-NN.

– This good performance on fairness by FairRet comes at a price in accuracy;
for instance, for the Adult dataset, accuracy falls by 5%.

– Turning to FairCBM, we see that it is very effective in bringing USS=0 close
to 1. It is less effective in fixing UEI. Again, this is not surprising given that
the FairCBM algorithm focuses on USS=0 only and does not consider UEI
which is a wider criterion.

In summary, when it comes to addressing underestimation, FairCBM performs
equally well compared to FairRet specifically in relation to the minority group
USS=0. However, it falls short in terms of the broader UEI criterion. On the
positive side, FairCBM excels at preserving accuracy, with a minimal decrease of
only 1% observed across the five datasets.

5 Conclusions

In this paper, we introduce FairCBM, a case-base maintenance strategy de-
signed to enhance fairness in Case-Based Reasoning (CBR) systems. This strat-
egy works by eliminating cases that lead to underestimations of favorable out-
comes for minority groups, such as loan approvals for females. Experimental
results show that FairCBM performs on par with the metric learning strategy
by Blanzeisky et al. [6] in terms of mitigating underestimation. An outstand-
ing feature of FairCBM is its transparency, which stands in stark contrast to
the relatively opaque nature of the metric learning approach. Looking forward,
we aim to explore the possibility of integrating both strategies to enhance the
effectiveness in rectifying bias.
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