
Towards Addressing Problem-Distribution Drift
with Case Discovery

David Leake and Brian Schack

Luddy School of Informatics, Computing, and Engineering, Indiana University
Bloomington IN 47408, USA
{leake,schackb}@indiana.edu

Abstract. Case-based reasoning (CBR) is a problem-solving and learn-
ing methodology that applies records of past experiences, captured as
cases, to solve new problems. The performance of CBR depends on re-
trieving cases relevant to each new problem that the reasoner encounters.
In real-world applications, the distribution of problems can change over
time, which can cause an issue for the competence and efficiency of CBR
systems. This paper proposes addressing this issue through predictive
case discovery, which involves predicting cases expected to be useful for
future problems to acquire them in advance. It presents an overview of
case discovery for problem-distribution drift, including the challenges in-
volved, proposed strategies, and future research directions. It illustrates
with a case study evaluating a clustering-based case discovery strategy
in a path planning domain across four scenarios: no drift, non-cyclical
drift, cyclical drift, and drift from obsolescence.

Key words: adversarial drift, case-base maintenance, case discovery,
data drift, problem-distribution drift, problem-distribution regularity,
representativeness assumption

1 Introduction

Case-based reasoning (CBR) solves new problems by adapting solutions from
similar past experiences to fit new circumstances (e.g. [16]). It is well known that
the effectiveness of any CBR system depends on two types of regularity, which
have been formalized as problem-solution regularity and problem-distribution
regularity [14]. Problem-solution regularity can be informally characterized as,
“Similar problems have similar solutions,” and is needed in order for the adapta-
tion of the solutions to retrieved cases to be useful in similar situations. Problem-
distribution regularity can be informally be characterized as, “Future problems
will resemble past problems.” This property is necessary so that learned cases
will tend to be useful in the future. In addition to these types of regularity,
another regularity is required by machine learning systems more generally: the
regularity that learned concepts tend to remain valid over time.

The effectiveness of CBR applications suggests that a combination of careful
system design and suitable problem environment can provide these properties in



2 David Leake and Brian Schack

practical situations. However, they are not guaranteed. As CBR is used in long-
lived systems, developments over time may diminish any of these regularities,
presenting difficulties for those systems. When concepts change over time, the
result is concept drift [32], which makes prior cases no longer apply and requires
case base updating [3]. When similarity criteria no longer reflect similarity for
system needs, for example due to changes in case adaptation knowledge, perfor-
mance may degrade [12]. When the distribution of problems changes over time,
the quality of case base coverage may degrade, contravening problem-distribution
regularity and requiring maintenance to ensure that the system has the cases
that it needs going into the future.

This paper first examines each of these types of regularity, and then focuses
on problem-distribution regularity, which to the authors’ knowledge, has received
little prior attention in CBR. To mitigate problem-distribution regularity fail-
ures, it proposes predictive case discovery: developing methods that identify and
anticipate problem-distribution drift to guide the selection of cases to request
from an external source.

This paper identifies general requirements and classes of detection methods
that may be used to guide case discovery. It then illustrates with a clustering-
based method aimed at identifying “hot spots” in the problem space on which
to focus discovery. It presents an evaluation of this sample method in a path
planning domain across four scenarios: no drift, non-cyclical drift, cyclical drift,
and drift from obsolescence. The results support the general effectiveness of
the strategy and also illustrate its limitations. The paper concludes with future
opportunities.

2 Regularities Underpinning CBR

Problem-Solution Regularity: The effectiveness of reuse of past cases depends
on problem-solution regularity — the property that solutions to similar prob-
lems will provide a useful starting point for solving a new problem. Often in the
CBR literature, the assumption is that adapting the solution to a similar prob-
lem should reduce solution generation cost compared to reasoning from scratch,
for generating an acceptable solution. Systems achieving this type of problem-
solution regularity have been demonstrated in multiple scenarios (e.g. [24, 31]).

Problem-Distribution Regularity: The benefit to the CBR process of storing past
cases depends on problem-distribution regularity — the property that the distri-
bution of future problems will tend to reflect that of past problems, such that
accumulated stored cases from past episodes tend to provide useful information
for future problems.

Formalizing the Properties: Leake and Wilson [14] provide a formalization of
these properties. They define problem-solution regularity as depending on:

1. The retrieval function the system uses to map problems to cases in the case
base



Addressing Problem-Distribution Drift with Case Discovery 3

2. A definition of the goals to be satisfied by retrieval –– what would make a
case a good starting point for solving a new problem.

3. The initial set of cases available to the system

4. The problems that the system is called upon to solve

Retrieval goals are often defined in terms of a predefined similarity measure,
such as the semantic similarity between a target problem and the problem part
of stored cases. However, they can be based on other criteria, e.g. that the
solution to the retrieved case should be inexpensive to adapt to generate a correct
solution to the new problem [24]. Another possible criterion is that the retrieved
case should be adaptable to generate a result within a certain accuracy.

Items (3) and (4) reflect that problem-solution regularity must be measured
in terms of the problems the system has to solve. Items (1), (2), and (3) are
under the control of a system designer. For example, to further problem-solution
regularity, a retrieval function aimed at retrieving adaptable cases could be hand-
designed, or it could be learned (e.g. [15]). However, new cases received by the
system, as referenced in (4), may cause changes in problem-solution regularity
if the retrieval function is ill-suited to judging similarity for those cases.

Problem-distribution regularity reflects the correlation between the distribu-
tion of cases in the case base and the distribution of future problems. Even a
case base evenly distributed across the problem space may have low problem-
distribution regularity if upcoming problems are not evenly distributed.

Problem-distribution regularity has been formalized in terms of the long-term
behavior of a CBR system: The probability that, at a given point in processing a
stream of problems, the system will be able to retrieve a case sufficiently close to
an input problem [14]. The assumption of problem-distribution regularity relates
to the influential representativeness assumption of case-base maintenance, “The
case base is a representative sample of the target problem space,” [25]. This
property is important for assessing case competence for the possible range of fu-
ture problems. However, problem-distribution regularity only measures whether
eventually the system will have a sufficient probability of containing the cases
needed to cover new problems; it measures (after the fact) whether it was possible
to cover most problems actually received by the system, rather than predicting
whether the case base provides a good sample of possible future problems.

3 How Regularity May Degrade: Types of Drift

Even in suitable domains, regularities may not always hold. Existing cases may
become obsolete [14], space or time requirements may necessitate deletion [28,
26] with corresponding competence loss [29], or the system may simply not have
been provided with sufficient initial cases (or the experiences to acquire cases)
to address current problems. The following subsections consider how drift may
affect concept regularity and problem-distribution regularity.



4 David Leake and Brian Schack

3.1 Concept Drift

Concept drift, a widely explored phenomenon in machine learning [17], refers to
the situation where the underlying concepts or relationships between the problem
and solution change over time. For example, in a system for property valuation,
inflation could cause prices to increase over time, providing a gradual transition,
or a chemical spill could cause an abrupt decrease in valuations in a particular
region. Or in a system for sentiment analysis, the evolution of slang could change
the interpretation of the sentiment of online messages. By making cases inac-
curate, concept drift can degrade the performance of a formerly accurate CBR
system. When inaccuracy is associated with the time passed since acquiring the
case, then this is characterized as case obsolescence.

3.2 Problem-Distribution Drift

Another issue arises in domains for which the problem distribution changes over
time. For a disaster management system, climate change can lead to shifts in
weather patterns, reducing the usefulness of a case base containing response
plans for historical weather patterns. For a travel agency recommender system,
certain areas may become “hot” destinations –– resulting in a different range
of necessary coverage. For a real estate appraisal system, developers may build
newer properties with different characteristics from older properties and beyond
the scope of reliable adaptation.

Problem-distribution drift refers to the change in the distribution of prob-
lems that the CBR system must solve. If a customer support system has cases
for certain problems and the types of problems customers encounter change,
the existing case base may become less useful, and the CBR system may need
to acquire new cases that are relevant to the new problem distribution. Be-
cause problem-distribution regularity is defined in terms of the limit of case base
growth, even when a domain satisfies problem-distribution regularity in the long
term, practical issues can still arise in the short term.

Causes of Problem-Distribution Drift Problem-distribution drift can be caused
by various factors, including changes in the environment, changes in user pref-
erences, changes in technology, or changes in the problem space itself.

Environmental changes The environment in which a CBR system operates
can change over time, leading to changes in the distribution of problems that
the system solves. For example, in a medical diagnosis system, changes in
the prevalence of certain diseases can lead to changes in the distribution of
medical problems that the system needs to diagnose and treat.

User preferences User desires or the problems that they wish to address may
change. For example, a recommender system for clothing or travel packages
needs to change seasonally as the problem distribution changes with user
preferences. In some scenarios, changes in fashion may also render prior
cases obsolete.



Addressing Problem-Distribution Drift with Case Discovery 5

Technological changes As technology advances, new problems can arise that
were not present before. For example, in a software support system, upgrades
in the software can incorporate new features and associated bugs for which
the system needs to provide support.

Changes in the problem space Changes in the underlying physics or changes
in the social or economic context of a domain may affect problem distribu-
tions. For example, in a financial prediction system, changes in the market
conditions or regulations can lead to changes in the distribution of financial
problems that the system needs to predict.

3.3 Adversarial Drift

Adversarial drift refers to data drift in which a reasoner responds to cases pre-
sented by an adversary who presents characteristically different cases over time
with the intention of degrading performance [10]. Adversarial drift could involve
concept drift, problem-solution regularity drift, or problem-distribution regular-
ity drift. Adversarial drift can be observed in imperfect information games such
as poker, in which players benefit from associating their opponent’s bets and
“tells” to their strategic position or the strength thereof. In such games, the op-
ponent may bluff their bets or fake their tells, intentionally breaking regularity
to gain an advantage. Delany et al. [5] tracked and mitigated adversarial drift
as spammers adapted their techniques to circumvent spam filters.

4 Addressing Problem-Distribution Drift with Guided
Case Discovery

Problem-distribution drift may be addressed in a two-step process. First, the
CBR system can detect and track drift. And second, it can extrapolate to antic-
ipate the path of the drift and request cases in the path of the drift. For example,
in a CBR system to recommend travel packages, if a new destination is published
in a major magazine, then the number of requests for packages for that region
may increase. If the trend of having more requests in that area can be detected,
then the system could request additional cases in that area to better prepare for
future requests.

4.1 Prior Work on Drift Detection

Drift detection algorithms generally fall into four categories: error rate-based
drift detection, data distribution-based drift detection, multiple hypothesis-based
drift detection, and competence-modeling strategies.

Error rate-based strategies compare the error rate of the model before and after a
certain time period. These algorithms are commonly used in classification tasks,
where the error rate can be calculated by comparing the predicted class labels
to the true class labels. Increased error rate over time can indicate data drift.
One common error rate-based algorithm is the ADWIN algorithm which adapts
the window size based on observed changes in the error rate [2].



6 David Leake and Brian Schack

Data distribution-based strategies compare the data distribution before and af-
ter a certain time frame. These algorithms can detect gradual changes in the
data distribution which may not be reflected in the error rate. One popular al-
gorithm is the Kullback-Leibler (KL) divergence-based method which measures
the difference between two probability distributions. If the divergence exceeds a
threshold, then this can indicate data drift [4].

Multiple hypothesis-based strategies test multiple hypotheses simultaneously, mak-
ing it possible to detect complex drift patterns. These algorithms are useful when
the data drift is not well understood or cannot be modeled using a simple statis-
tical model. One example of a multiple hypothesis-based algorithm is the Just-
in-Time adaptive classifiers (JIT) algorithm which uses a sequence of hypotheses
tests to detect changes in the data distribution [1].

Competence-modeling strategies, such as proposed by Lu et al. [18] detect drift
based on changes in competence.

Depending on the strategy, the curse of dimensionality can also impact the de-
tection of data drift. The curse of dimensionality refers to the problem of high
dimensionality in a problem space leading to sparsity and high computational
costs [11]. As the number of dimensions increases, cases can become widely
dispersed in the high-dimensional space making changes in their distribution
difficult to detect. One approach to addressing the curse of dimensionality is
to reduce the dimensionality of the dataset by selecting relevant features before
applying drift detection algorithms.

4.2 Case Discovery

When problem-distribution regularity decreases, a potential repair is to add cases
to the case base. Case discovery can fill gaps in the distribution of the cases in the
case base to cover upcoming problems that would otherwise fall into those gaps.
In systems including a generative component capable of solving problems from
scratch, discovery can be done by calling upon that component. In that situation,
generating the solution in advance does not increase competence but provides
speed-up learning by avoiding the need to generate a solution from scratch at
run time (e.g., as in Prodigy/Analogy [31]). In other scenarios, discovery may
be done by requesting cases beyond system competence from an external source
such as a domain expert.

Which Cases to Discover: As the cost of case solicitation may be high, effec-
tiveness of discovery depends on targeting [19–23]. For example, McKenna and
Smyth [20] propose a case discovery strategy which identifies competence holes
in a case base to fill by discovering spanning cases. Such approaches can be com-
bined with problem prediction to further focus on the regions of the problem
space likely to be relevant to incoming problems.



Addressing Problem-Distribution Drift with Case Discovery 7

Let

– CB: the case base,
– part: a partition function,
– active-part: a function selecting one of the subsets of a partition,
– rep: a function generating a case to discover given a set of cases

Generate-target-case(CB, part, active-part, rep)

1. parts ← part(CB)
2. chosen-part ← active-part(parts)
3. target-case ← rep(chosen-part)
4. Return target-case

Fig. 1: General discovery procedure

Let d be a distance metric, N the number of desired clusters, and CB the case base:

1. Divide the training cases into N clusters using the k-means algorithm for distance d.
2. Randomly choose a cluster CL of training cases.
3. Find cr = centroid case of CL.
4. Alter the value of a single feature of cr to yield a variation to request for discovery.

Fig. 2: K-means discovery algorithm

Additional methods could be brought to bear from outside CBR. For ex-
ample, the SMOTE oversampling algorithm [6] mitigates class imbalance by
generating synthetic instances by interpolating between neighboring minority
instances. Extensions to SMOTE can handle concept drift on time series data
[8]. Case discovery and oversampling can also be seen as similar in spirit to data
augmentation for neural networks [9]. Applying a similar spirit to case-based
reasoning, adaptation rules provide a knowledge-rich source of transformations
that go beyond interpolation, yielding “ghost cases” that tend to preserve case
cohesion [13]. Ghost cases generated by adaptation can improve efficiency but
generally would not be expected to increase competence.

4.3 Clustering-Based Case Discovery

This paper proposes a general case discovery strategy of dividing the problem
space into parts, predicting the most active part, selecting a point in that part,
and then requesting discovery of that case. This is illustrated in Figure 1. As
an illustration and for empirical evaluation, the paper applies this strategy in a
simple clustering-based approach that we call k-means discovery.

K-means discovery uses k-means clustering to divide the problem space into
N regions for a predefined value N . It then selects a random cluster from the
N regions, meaning that N determines the balance between exploration (for
large N , resulting in small regions) and exploitation (for small N , resulting in



8 David Leake and Brian Schack

large regions). Alternative methods could, for example, favor “up and coming”
clusters with recent activity.

After a cluster is selected, k-means discovery finds the case at the centroid of
that cluster. Then it generates a variation on the centroid case by altering that
case. In our simple demonstration, it does so by altering the value of a single
feature. For example, in the path planning domain, the variation could be a path
where one endpoint is the same as in the centroid path, and the other endpoint
is randomly chosen from the entire graph. Richer methods could be used, such
as adaptation strategies changing several features of the problem description
in concert. (See Leake and Schack [13] for a discussion of adaptation of both
problem and solution parts of cases to generate ghost cases.) The variation on
the centroid case becomes the case to discover.

This paper uses clustering-based case discovery as an illustration because it is
simple and requires minimal domain knowledge, making it suitable for domains
where knowledge is scarce or costly to obtain. And because, by choosing the case
at the centroid of the cluster, the strategy tends to discover a variant of a case
representative of that cluster –– which the authors hypothesized would reflect
‘hot spots’ because less representative cases would tend towards the edges. As
needed, k-means could be replaced with other methods. For example, spheri-
cal k-means, using cosine similarity, could be used for textual cases, or affinity
propagation could be used for clustering based on precomputed distances and
without predetermining a number of clusters.

5 Managing Multiple Strategies

Drift detection and case discovery strategies may have different strengths and
weaknesses depending on the characteristics of the problem domain and the
data drift (if any). Additionally, each strategy may have parameters (such as
window size or number of clusters) that need to be tuned to achieve optimal
performance. Choosing the “right” strategies and parameters can impact the
accuracy and efficiency of drift detection and case discovery.

A potential approach to dealing with this issue is to develop a library of
strategies and select which to apply. Bandit meta-strategies provide a potential
approach. If strategies are initially selected at random, and the choice between
strategies is weighted based on the number of problems for which the strategies’
cases were successfully used in the past, choices could be refined to favor suc-
cessful strategies. However, for a rapidly-changing distribution, this information
could quickly become obsolete. This is a subject for future study.

6 Evaluation

The experiments evaluate the proposed clustering-based case discovery strategy,
examining the following question:



Addressing Problem-Distribution Drift with Case Discovery 9

Fig. 3: An example of a graph modeling a randomly constructed transit network.
Frequently visited nodes are red, and infrequently visited nodes are blue.

What effect does the k-means discovery strategy have on the adaptation cost of re-
trieved cases compared to random case discovery across four scenarios: no drift,
non-cyclical drift, cyclical drift, and obsolescence?

6.1 Testing Scenario

The experiments are conducted in a simulated path planning domain. This is an
established domain for evaluating CBR systems (e.g. PathFinder [27]), and it has
practical applications such as for mobile robots [7] and autonomous underwater
vehicles [30]. The intuitive motivation for the scenario is that an agent needs to
travel from place to place. Cases are modeled with a problem part and a solution
part. The problem part is the starting and ending points of the travel path, and
the solution part is a list of nodes along the path from the starting point to the
ending point.

Some routes and destinations will occur more frequently than others and
the scenario can change over time due to moving homes, changing jobs, closing
roads, and so on, providing problem distribution drift.

The experiments model the road and transit network as a graph in which
each node is a destination. Variations on the scenario explore obsolescence of
cases and cyclical and non-cyclical problem-distribution drift. Obsolescence is
modeled by assigning an expiration age to cases; cases are no longer available
after a certain number of problems have been solved. The following paragraphs
in this section describe the details of the testing scenario, and code for replicating
the evaluation is available in a public GitHub repository.1

Constructing the Graphs Each iteration was done on a different graph generated
with 100 nodes. Each node was positioned randomly in two-dimensional space.
The edges were constructed with k-edge augmentation where k = 1. The edge

1 https://github.com/schackbrian2012/ICCBR-2023



10 David Leake and Brian Schack

augmentation ensures that the graph cannot be disconnected unless k or more
edges are removed. Although the graphs were unweighted, the edge augmentation
was weighted by the Euclidean distance between nodes. The number of edges
varied from graph to graph.

The edge augmentation method served three purposes: First, some path
should exist between any pair of nodes so that path planning is possible. Sec-
ond, most paths should be longer than a single edge so that path planning is
non-trivial. And third, edges should be more common between nearby pairs of
nodes than between distant pairs of nodes, for a correlation between Euclidean
distance (for retrieval) and graph distance (for adaptation). Figure 3 illustrates
a graph constructed by this method.

Populating the Case Base For each test, the case base was populated by first
randomly choosing 10 distinct nodes from the graph, to serve as the frequently
visited nodes. These were unequally weighted from most frequent (10) to least
frequent (1). A node was randomly chosen from the frequently visited nodes,
weighted by node weights. Another node was randomly chosen from the whole
graph, giving each node an equal probability. Either a departing path (from a
frequently visited node to a random node) or a returning path (from a random
node to a frequently visited node) was constructed. The process was repeated
to generate 1,000 paths.

This method of populating the case base served three purposes: First, be-
cause the nodes are randomly selected from the graph, the paths in the case
base cover different parts of the graph. This diversity is important for evaluating
the ability of the case discovery strategy to adapt to changes in the problem
distribution. Second, by giving higher weights to frequently visited nodes, the
method accounts for the fact that some parts of the graph may be more impor-
tant than others, a realistic assumption for the path planning domain. Third,
1,000 paths is large enough to capture the variability in the problem distribution
and the ability of the case discovery strategy to adapt to it.

Discovery Methods The evaluation compared three discovery methods. The No
Discovery method is a baseline that does not discover any cases. The Random
Discovery and Clustering-Based Discovery methods discover one case at each
time step. The Random Discovery method selects random values for each feature
of the problem part of the case for discovery. In the path planning domain, the
starting and ending points of the path for discovery are two nodes randomly cho-
sen from the entire graph. The Clustering-Based Discovery method uses k-means
discovery with eight clusters and a categorical distance metric. Exploratory anal-
ysis of different numbers of clusters showed that eight was effective for this task.
The categorical distance metric treats each node as a category (instead of a
two-dimensional coordinate) and compares nodes by exact match.

Distance Metric for Retrieval The retrieval process yields the most similar train-
ing or discovery case to the testing problem measured according to the Euclidean



Addressing Problem-Distribution Drift with Case Discovery 11

distance between two four-dimensional vectors –– the x- and y-coordinates of the
source and target nodes of each path –– resolving ties arbitrarily.

Performance Assessment Methods The three discovery methods were compared
using two performance assessment methods: Leave One Out and Time Series
Cross-Validation. For both evaluation methods, at each time step, the reasoner
is presented with the problem part of a different testing case –– making the
number of time steps equal to the number of folds. The order of testing is the
same as the order of generation described in the previous “Populating the Case
Base” subsection and Section 6.2. For the Leave One Out method, the training
cases include all cases other than the testing case. For the Time Series Cross-
Validation method, the training cases include all cases encountered prior to the
testing case. The experiment ran for 10 iterations with different graphs and case
bases in each iteration.

The Leave One Out method tests generalizability by iteratively training on
all but one data point, and then testing on the left-out data point, to prevent
over-fitting. The Time Series Cross-Validation method is suited for temporal
data, as it evaluates the performance of the model on future time points based
on the training data available up to that point, simulating a real-world scenario
where the model has to predict future events based on past data.

Distance Metric for Evaluation The distance metric for evaluating the adapta-
tion cost of a solution sums of the number of edges in the shortest path to adapt
the starting and ending points of a training case to the starting and ending points
of the testing case. Unlike the distance metric for retrieval, the distance met-
ric for evaluation ignores Euclidean distance. For an exact match, the distance
metric returns zero.

6.2 Variations on the Testing Scenario

The experiments evaluated four variations on the testing scenario: No Drift,
Non-Cyclical Drift, Cyclical Drift, and Obsolescence.

No Drift Scenario The frequently visited nodes remain the same throughout the
time series. The No Drift Scenario serves as a baseline for comparison with the
other scenarios. It tests the ability of the case discovery strategy to handle a
stable problem distribution where the frequently visited nodes remain the same
throughout the time series.

Non-Cyclical Drift Scenario Halfway through the time series, at time step 500,
the frequently visited nodes are changed to a different set of frequently visited
nodes constructed by the same random sampling of the nodes. This in turn
abruptly changes the paths constructed from the frequently visited nodes. The
Non-Cyclical Drift Scenario tests the ability of the case discovery strategy to
handle abrupt changes in the problem distribution.



12 David Leake and Brian Schack

Cyclical Drift Scenario This scenario alternates between two sets of frequently
visited nodes for two equal-length phases of each set. It tests the ability of the
case discovery strategy to handle cyclic changes in the problem distribution,
which can occur due to seasonal changes or recurring patterns in the user be-
havior. Specifically, this scenario tests the ability of the case discovery strategy
to adapt to two different sets of frequently visited nodes and construct paths
that switch between the two sets.

Obsolescence Scenario This scenario simulates case obsolescence by only reusing
cases stored or discovered at less than 100 time steps before the testing problem
that they solve (for the evaluation that allows use of all cases in the case stream,
future cases are also only considered within 100 time steps). Evaluation penalizes
the retrieval of an obsolete case by re-planning the entire path from the starting
point to the ending point of the testing problem. The number of edges in the
re-planned path is treated as the adaptation cost from the obsolete case to the
testing problem. The distance metrics for retrieval and clustering do not consider
obsolescence.

6.3 Experimental Results

Figure 4 shows the experimental results. The x-axis measures the time step of
the testing case under evaluation. The y-axis measures the adaptation cost of
the solution. Each graph presents the rolling average of adaptation cost over a
window of 100 time steps.

The none loo and none tscv series use the No Discovery strategy. The ran-
dom loo and random tscv series use the Random Discovery strategy. And the
k-means loo and k-means tscv series use the Clustering-Based Discovery strat-
egy. The none loo, random loo, and k-means loo series use the Leave One Out
evaluation method; the none tscv, random tscv, and k-means tscv series use the
Time Series Cross-Validation evaluation method.

No Drift Scenario –– Figure 4a The adaptation cost of Leave One Out eval-
uation remains steady over time because both past and future cases make up
its training. The adaptation cost of Time Series Cross-Validation improves over
time because the number of cases for training and discovery increase over time.
The adaptation cost of each discovery method evaluated by Time Series Cross-
Validation approaches the adaptation cost of the same discovery method evalu-
ated by Leave One Out. Random Discovery outperforms No Discovery because
discovery yields additional cases beyond the training cases. Clustering-Based
Discovery outperforms Random Discovery because the cases discovered by the
former tend to match the distribution of problems, and cases discovered by the
latter tend towards an even distribution over the problem space.

Non-Cyclical Drift Scenario –– Figure 4b The earlier phase goes from time steps
0–500, and the later phase goes from time steps 500–1,000. The plot does not
show time steps 0–100 because of the rolling window of 100 time steps. The



Addressing Problem-Distribution Drift with Case Discovery 13

(a) No Drift (b) Non-Cyclical Drift

(c) Cyclical Drift (d) Obsolescence Scenario

Fig. 4: Evaluation of clustering-based case discovery across four scenarios.

earlier phase resembles the No Drift Scenario in Figure 4a because no drift
has yet occurred. Halfway through, at time step 500, adaptation cost increases
for the Time Series Cross-Validation evaluation method because the problem
distribution of training cases from the earlier phase does not match the problem
distribution of testing cases from the later phase.

Adaptation cost increases more steeply for the none tscv and k-means tscv
series than the random tscv series because the latter discovers cases unbiased by
the problem distribution of the earlier phase. The adaptation cost of k-means loo
also increases because it discovers the same cases as k-means tscv which are
biased towards the problem distribution of the earlier phase. Around time step
600, adaptation cost for Time Series Cross-Validation begins to decrease again as
training cases arrive from the later phase and the k-means clustering algorithm
incorporates training cases from both phases. Like Figure 4a, approaching the
end at time step 1,000, the adaptation cost of each discovery method evaluated
by Time Series Cross-Validation approaches the adaptation cost of the same
discovery method evaluated by Leave One Out.



14 David Leake and Brian Schack

Cyclical Drift Scenario –– Figure 4c The first phase, from time steps 0–500,
resembles the No Drift Scenario in Figure 4a because no drift has occurred yet.
The first two phases, from time steps 0–1,000, resemble the Non-Cyclical Drift
Scenario in Figure 4b because the drift has not yet repeated an earlier phase.
The first drift (from the first phase to the second phase) and the third drift
(from the third phase to the fourth phase) impact adaptation cost more than
the second drift (from the second phase to the third phase) because the problem
distribution of the training cases and the Guided Discovery cases in the first
phase matches the third phase.

Obsolescence Scenario –– Figure 4d Adaptation cost drops for the Time Se-
ries Cross-Validation evaluation method before time step 200 as training and
discovery cases arrive to solve testing problems. Then the ratio of obsolete to
contemporary training and discovery cases increases –– causing an increase in
the number of obsolete cases retrieved and an increase in the adaptation cost.
Adaptation cost increases for the Leave One Out evaluation method at the start
and end of the time series. The window of contemporary cases is 100 time steps
before and after the test problem, but the start (resp. end) of the time series has
fewer cases before (resp. after) the test problem.

7 Conclusion

This paper discusses the regularities required for successful case-based reason-
ing and potential issues arising from various types of drift, including concept
drift, problem-distribution drift, and adversarial drift. Then it discusses different
strategies for detecting drift, such as error rate-based, data distribution-based,
and multiple hypothesis-based strategies. It illustrates a case discovery strategy,
k-means discovery, guided by k-means clustering, and evaluates its effectiveness
on synthetic time series data in a path planning domain across four different
scenarios. The evaluation demonstrates that it outperforms baselines. However,
because the effectiveness of discovery strategies depends on characteristics of the
drift itself, there is no universal strategy. An important next step is to explore
additional strategies for drift prediction and identifying cases to discover, includ-
ing drawing on methods from outside CBR, and investigating ways to select the
right strategy for the domain.

8 Acknowledgments

This work was funded in part by the Department of the Navy, Office of Naval
Research (Award N00014-19-1-2655).

References

1. Alippi, C., Roveri, M.: Just-in-time adaptive classifiers—part I: Detecting nonsta-
tionary changes. IEEE Transactions on Neural Networks 19(7), 1145–1153 (2008)



Addressing Problem-Distribution Drift with Case Discovery 15

2. Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing.
In: Proceedings of the 2007 SIAM international conference on data mining. pp.
443–448. SIAM (2007)

3. Cunningham, P., Nowlan, N., Delany, S., Haahr, M.: A case-based approach to
spam filtering that can track concept drift. Tech. Rep. TCD-CS-2003-16, Computer
Science Department, Trinity College Dublin (2003)

4. Dasu, T., Krishnan, S., Venkatasubramanian, S., Yi, K.: An information-theoretic
approach to detecting changes in multi-dimensional data streams. In: Proc. Sympo-
sium on the Interface of Statistics, Computing Science, and Applications (Interface)
(2006)

5. Delany, S.J., Cunningham, P., Tsymbal, A., Coyle, L.: A case-based technique for
tracking concept drift in spam filtering. In: Applications and Innovations in Intelli-
gent Systems XII: Proceedings of AI-2004, the Twenty-fourth SGAI International
Conference on Innovative Techniques and Applications of Artificial Intelligence.
pp. 3–16. Springer (2005)

6. Fernández, A., Garcia, S., Herrera, F., Chawla, N.V.: Smote for learning from
imbalanced data: progress and challenges, marking the 15-year anniversary. Journal
of artificial intelligence research 61, 863–905 (2018)

7. Hodál, J., Dvorák, J.: Using case-based reasoning for mobile robot path planning.
Engineering Mechanics 15(3), 181–191 (2008)

8. Hoens, T.R., Polikar, R., Chawla, N.V.: Learning from streaming data with concept
drift and imbalance: an overview. Progress in Artificial Intelligence 1(1), 89–101
(2012)

9. Iwana, B.K., Uchida, S.: An empirical survey of data augmentation for time series
classification with neural networks. PLOS one 16(7), e0254841 (2021)

10. Kantchelian, A., Afroz, S., Huang, L., Islam, A.C., Miller, B., Tschantz, M.C.,
Greenstadt, R., Joseph, A.D., Tygar, J.: Approaches to adversarial drift. In: Pro-
ceedings of the 2013 ACM workshop on Artificial intelligence and security. pp.
99–110 (2013)

11. Köppen, M.: The curse of dimensionality. In: 5th online world conference on soft
computing in industrial applications (WSC5). vol. 1, pp. 4–8 (2000)

12. Leake, D., Kinley, A., Wilson, D.: Learning to integrate multiple knowledge sources
for case-based reasoning. In: Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence. pp. 246–251. Morgan Kaufmann (1997)

13. Leake, D., Schack, B.: Exploration vs. exploitation in case-base maintenance:
Leveraging competence-based deletion with ghost cases. In: Case-Based Reasoning
Research and Development, ICCBR 2018. pp. 202–218. Springer, Berlin (2018)

14. Leake, D., Wilson, D.: When experience is wrong: Examining CBR for changing
tasks and environments. In: Proceedings of the Third International Conference on
Case-Based Reasoning. pp. 218–232. Springer Verlag, Berlin (1999)

15. Leake, D., Ye, X.: Harmonizing case retrieval and adaptation with alternating
optimization. In: Case-Based Reasoning Research and Development, ICCBR 2021.
pp. 125–139. Springer, Cham (2021)

16. López de Mántaras, R., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S.,
Faltings, B., Maher, M., Cox, M., Forbus, K., Keane, M., Aamodt, A., Watson, I.:
Retrieval, reuse, revision, and retention in CBR. Knowledge Engineering Review
20(3) (2005)

17. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept
drift: A review. IEEE Transactions on Knowledge and Data Engineering 31(12),
2346–2363 (2019)



16 David Leake and Brian Schack

18. Lu, N., Zhang, G., Lu, J.: Concept drift detection via competence models. Artificial
Intelligence 209, 11–28 (2014)

19. Massie, S., Craw, S., Wiratunga, N.: Complexity-guided case discovery for case
based reasoning. In: AAAI’05: Proceedings of the 20th national conference on
Artificial intelligence. pp. 216–221. AAAI Press (2005)

20. McKenna, E., Smyth, B.: Competence-guided case discovery. In: Research and
Development in Intelligent Systems XVIII. pp. 97–108. Springer, London (2002)

21. McSherry, D.: Automating case selection in the construction of a case library.
In: Research and Development in Intelligent Systems XVI: Proceedings of ES99,
the Nineteenth SGES International Conference on Knowledge-Based Systems and
Applied Artificial Intelligence, Cambridge, December 1999. pp. 163–177. Springer
(2000)

22. McSherry, D.: Intelligent case-authoring support in casemaker-2. Computational
Intelligence 17(2), 331–345 (2001)

23. Mehdi Owrang O, M.: Case discovery in case-based reasoning systems. Information
systems management 15(1), 74–78 (1998)

24. Smyth, B., Keane, M.: Adaptation-guided retrieval: Questioning the similarity as-
sumption in reasoning. Artificial Intelligence 102(2), 249–293 (1998)

25. Smyth, B., McKenna, E.: Competence models and the maintenance problem. Com-
putational Intelligence 17, 235–249 (2001)

26. Smyth, B.: Case-base maintenance. In: Tasks and Methods in Applied Artificial
Intelligence: 11th International Conference on Industrial and Engineering Ap-
plications of Artificial Intelligence and Expert Systems IEA-98-AIE Benicàssim,
Castellón, Spain, June 1–4, 1998 Proceedings, Volume II 11. pp. 507–516. Springer
(1998)

27. Smyth, B., Cunningham, P.: The utility problem analysed: A case-based reasoning
perspective. In: Advances in Case-Based Reasoning: Third European Workshop
EWCBR-96 Lausanne, Switzerland, November 14–16, 1996 Proceedings 3. pp. 392–
399. Springer (1996)

28. Smyth, B., Keane, M.T.: Remembering to forget. In: Proceedings of the 14th in-
ternational joint conference on Artificial intelligence. pp. 377–382. Citeseer (1995)

29. Smyth, B., McKenna, E.: Competence models and the maintenance problem. Com-
putational Intelligence 17(2), 235–249 (2001)

30. Vasudevan, C., Ganesan, K.: Case-based path planning for autonomous underwater
vehicles. Autonomous Robots 3(2-3), 79–89 (1996)

31. Veloso, M.: Planning and Learning by Analogical Reasoning. Springer Verlag,
Berlin (1994)

32. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden
contexts. Machine Learning 23(1), 69–101 (1996)


